Suppr超能文献

将模拟的环境变异性纳入水下声源定位的神经网络训练中。

Integrating modeled environmental variability into neural network training for underwater source localization.

机构信息

Department of Underwater Acoustics, Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo 28930-000, Brazil.

出版信息

J Acoust Soc Am. 2023 Jun 1;153(6):3201. doi: 10.1121/10.0019632.

Abstract

Supervised machine learning (ML) is a powerful tool that has been applied to many fields of underwater acoustics, including acoustic inversion. ML algorithms depend on the existence of extensive labeled datasets, which are difficult to obtain for the task of underwater source localization. A feed-forward neural network (FNN) trained on imbalanced or biased data may end up suffering from a problem analogous to model mismatch in matched field processing (MFP), that is, producing incorrect results due to a difference between the environment sampled by the training data and the actual environment. To overcome this issue, physical and numerical propagation models can act as data augmentation tools to compensate for the lack of comprehensive acoustic data. This paper examines how modeled data can be effectively used for training FNNs. Mismatch tests compare the output from a FNN and MFP and show that the network becomes more robust to various kinds of mismatches when trained on diverse environments. A systematic analysis of how the training dataset's variability impacts a FNN's localization performance on experimental data is carried out. Results show that networks trained with synthetic data achieve better and more robust performance than regular MFP when environment variability is taken into account.

摘要

监督机器学习(ML)是一种强大的工具,已被应用于水下声学的许多领域,包括声反演。ML 算法依赖于大量标记数据集的存在,但对于水下声源定位任务来说,这些数据集很难获得。在不平衡或有偏差的数据上训练的前馈神经网络(FNN)可能最终会遇到类似于匹配场处理(MFP)中模型失配的问题,即由于训练数据所采样的环境与实际环境之间的差异而导致产生错误的结果。为了解决这个问题,可以使用物理和数值传播模型作为数据增强工具来弥补全面声数据的不足。本文研究了如何有效地使用模型数据来训练 FNN。失配测试比较了 FNN 和 MFP 的输出,并表明在不同环境下训练的网络对各种失配的鲁棒性更强。对 FNN 在实验数据上的定位性能受训练数据集可变性影响的系统分析表明,在考虑环境可变性时,使用合成数据训练的网络比常规 MFP 实现了更好和更稳健的性能。

相似文献

8
Shallow-water sparsity-cognizant source-location mapping.浅水稀疏感知源定位映射
J Acoust Soc Am. 2014 Jun;135(6):3483-501. doi: 10.1121/1.4874605.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验