Suppr超能文献

利用冠状动脉斑块定量分析以及基于计算机断层扫描得出的病变处血流储备分数变化来识别导致缺血的病变。

Identification of ischemia-causing lesions using coronary plaque quantification and changes in fractional flow reserve derived from computed tomography across the lesion.

作者信息

Yan Hankun, Zhao Na, Geng Wenlei, Yu Xianbo, Gao Yang, Lu Bin

机构信息

Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.

CT Collaboration, Siemens Healthineers Ltd., Beijing, China.

出版信息

Quant Imaging Med Surg. 2023 Jun 1;13(6):3630-3643. doi: 10.21037/qims-22-1049. Epub 2023 Apr 20.

Abstract

BACKGROUND

This study sought to evaluate the association between coronary plaque characteristics, changes in the fractional flow reserve (FFR) derived from computed tomography across the lesion (ΔFFR), and lesion-specific ischemia using the FFR in patients with suspected or known coronary artery disease.

METHODS

The study assessed coronary computed tomography (CT) angiography stenosis, plaque characteristics, ΔFFR, and FFR in 164 vessels of 144 patients. Obstructive stenosis was defined as stenosis ≥50%. An area under the receiver -operating characteristics curve (AUC) analysis was conducted to define the optimal thresholds for ΔFFR and the plaque variables. Ischemia was defined as a FFR of ≤0.80.

RESULTS

The optimal cut-off value of ΔFFR was 0.14. Low-attenuation plaque (LAP) ≥76.23 mm and a percentage aggregate plaque volume (%APV) ≥28.91% can be used to predict ischemia independent of other plaque characteristics. The addition of LAP ≥76.23 mm and %APV ≥28.91% improved the discrimination (AUC, 0.742 0.649, P=0.001) and reclassification abilities [category-free net reclassification index (NRI), 0.339, P=0.027; relative integrated discrimination improvement (IDI) index, 0.093, P<0.001] of the assessments compared to the stenosis evaluation alone, and the addition of information about ΔFFR ≥0.14 further increased the discrimination (AUC, 0.828 0.742, P=0.004) and reclassification abilities (NRI, 1.029, P<0.001; relative IDI, 0.140, P<0.001) of the assessments.

CONCLUSIONS

The addition of the plaque assessment and ΔFFR to the stenosis assessments improved the identification of ischemia compared to the stenosis assessment alone.

摘要

背景

本研究旨在评估疑似或已知冠心病患者的冠状动脉斑块特征、基于计算机断层扫描得出的病变处血流储备分数(FFR)变化(ΔFFR)以及使用FFR评估的病变特异性缺血之间的关联。

方法

该研究评估了144例患者164条血管的冠状动脉计算机断层扫描(CT)血管造影狭窄情况、斑块特征、ΔFFR和FFR。阻塞性狭窄定义为狭窄≥50%。进行了受试者操作特征曲线(AUC)下面积分析,以确定ΔFFR和斑块变量的最佳阈值。缺血定义为FFR≤0.80。

结果

ΔFFR的最佳截断值为0.14。低衰减斑块(LAP)≥76.23 mm和总斑块体积百分比(%APV)≥28.91%可用于独立于其他斑块特征预测缺血。增加LAP≥76.23 mm和%APV≥28.91%可提高评估的辨别能力(AUC,0.742对0.649,P = 0.001)和重新分类能力[无类别净重新分类指数(NRI),0.339,P = 0.027;相对综合辨别改善(IDI)指数,0.093,P < 0.001],与单独的狭窄评估相比,增加ΔFFR≥0.14的信息进一步提高了评估的辨别能力(AUC,0.828对0.742,P = 0.004)和重新分类能力(NRI,1.029,P < 0.001;相对IDI,0.140,P < 0.001)。

结论

与单独的狭窄评估相比,在狭窄评估中增加斑块评估和ΔFFR可改善缺血的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c7/10239986/8512a018ae5e/qims-13-06-3630-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验