SKU College of Pharmaceutical Sciences, SKU, Ananthapuramu, Andhra Pradesh, India.
Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
J Biomol Struct Dyn. 2024 Feb-Mar;42(3):1208-1219. doi: 10.1080/07391102.2023.2220025. Epub 2023 Jun 7.
This study focused on molecular docking, dynamic simulation, and approaches to examine the molecular interactions between citronellal (CT) and neurotoxic proteins. In silico studies of CT were performed using proteins involved in the pathophysiology of stroke, such as interleukin-6 (IL-6), interleukin-12 (IL-12), TNF-α, and nitric oxide synthase (NOS), to determine the binding affinity based on their interactions. The docking results of CT revealed that, among the targets, NOS had a better binding energy of -6.4 Kcal/mol. NOS showed good hydrophobic interactions: TYR A, 347; VAL A, 352; PRO A, 350; TYR A, 373 amino acids. Interactions with IL-6, TNF-α, and IL-12 resulted in lower binding affinities of -3.7, -3.9 and -3.1 Kcal/mol. Based on molecular dynamics simulations of 100 ns, the binding affinity of CT (-66.782 ± 7.309 kJ/mol) was well complemented, and NOS stability at the docked site was confirmed. In studies, cerebral stroke was induced by occlusion of the bilateral common carotid arteries for 30 min and reperfusion for 4 h. CT treatment protected the brain by decreasing cerebral infarction size, increasing GSH( < 0.001***), decreasing MPO ( < 0.001***), MDA ( < 0.001***), NO production ( < 0.01**), and AChE ( < 0.001***) compared to stroke rats. Histopathological examination revealed that CT treatment reduced the severity of cerebral damage. The investigation concluded that CT strongly binds to NOS, as observed in molecular docking and dynamic simulation studies, which are involved in nitric oxide production, leading to cerebral damage, and CT treatment reduces NO production and oxidative stress parameters, and increases antioxidants inhibition of NOS function.Communicated by Ramaswamy H. Sarma.
这项研究专注于分子对接、动态模拟,并采用多种方法来研究橙花醛(CT)与神经毒性蛋白之间的分子相互作用。使用与中风病理生理学相关的蛋白质(如白细胞介素-6(IL-6)、白细胞介素-12(IL-12)、TNF-α和一氧化氮合酶(NOS))进行 CT 的计算机研究,以根据它们的相互作用确定结合亲和力。CT 的对接结果表明,在这些靶点中,NOS 具有更好的结合能(-6.4 Kcal/mol)。NOS 表现出良好的疏水性相互作用:TYR A、347;VAL A、352;PRO A、350;TYR A、373 个氨基酸。与 IL-6、TNF-α 和 IL-12 的相互作用导致结合亲和力降低至-3.7、-3.9 和-3.1 Kcal/mol。基于 100 ns 的分子动力学模拟,CT 的结合亲和力(-66.782 ± 7.309 kJ/mol)得到了很好的补充,并且在对接位点上确认了 NOS 的稳定性。在研究中,通过阻塞双侧颈总动脉 30 分钟并再灌注 4 小时来诱导脑卒。与脑卒中大鼠相比,CT 治疗通过减少脑梗死面积、增加 GSH(<0.001***)、减少 MPO(<0.001***)、MDA(<0.001***)、NO 产生(<0.01**)和 AChE(<0.001**)来保护大脑。组织病理学检查显示,CT 治疗减轻了脑损伤的严重程度。研究结论认为,CT 与 NOS 强烈结合,如分子对接和动态模拟研究所示,这与一氧化氮的产生有关,导致脑损伤,CT 治疗减少 NO 产生和氧化应激参数,并增加抗氧化剂抑制 NOS 功能。由 Ramaswamy H. Sarma 传达。