Suppr超能文献

双光子成像中的孤子动力学研究。

Two-photon imaging of soliton dynamics.

机构信息

Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.

出版信息

Nat Commun. 2023 Jun 7;14(1):3339. doi: 10.1038/s41467-023-39045-9.

Abstract

Optical solitary waves (solitons) that interact in a nonlinear system can bind and form a structure similar to a molecule. The rich dynamics of this process have created a demand for rapid spectral characterization to deepen the understanding of soliton physics with many practical implications. Here, we demonstrate stroboscopic, two-photon imaging of soliton molecules (SM) with completely unsynchronized lasers, where the wavelength and bandwidth constraints are considerably eased compared to conventional imaging techniques. Two-photon detection enables the probe and tested oscillator to operate at completely different wavelengths, which permits mature near-infrared laser technology to be leveraged for rapid SM studies of emerging long-wavelength laser sources. As a demonstration, using a 1550 nm probe laser we image the behavior of soliton singlets across the 1800-2100 nm range, and capture the rich dynamics of evolving multiatomic SM. This technique may prove to be an essential, easy-to-implement diagnostic tool for detecting the presence of loosely-bound SM, which often remain unnoticed due to instrumental resolution or bandwidth limitations.

摘要

在非线性系统中相互作用的光孤子(孤立波)可以束缚并形成类似于分子的结构。这一过程的丰富动力学要求进行快速光谱特征分析,以加深对孤子物理的理解,并具有许多实际意义。在这里,我们演示了使用完全不同步的激光器进行孤子分子(SM)的频闪双光子成像,与传统成像技术相比,该方法大大放宽了对波长和带宽的限制。双光子探测使得探针和测试振荡器可以在完全不同的波长下工作,这使得成熟的近红外激光技术可以用于新兴长波长激光源的快速 SM 研究。作为一个演示,我们使用 1550nm 的探针激光在 1800-2100nm 范围内成像孤子单脉冲的行为,并捕捉到多原子 SM 的演化丰富的动力学。该技术可能成为检测松散束缚 SM 的重要、易于实现的诊断工具,由于仪器分辨率或带宽限制,这些 SM 往往未被注意到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8764/10247745/14e87ec70c3d/41467_2023_39045_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验