Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan.
J Chem Theory Comput. 2023 Jul 11;19(13):3958-3965. doi: 10.1021/acs.jctc.3c00298. Epub 2023 Jun 8.
In the present study, we have examined the performance of the various small basis sets and their geometric counterpoise (gCP) corrections for DFT computations. The original gCP correction scheme includes four adjustable parameters tailored for each method and basis set, but we find that the use of a single scaling parameter also yields fair results. We term this simplified scheme unity-gCP, which can be straightforwardly applied for devising a reasonable correction for an arbitrary basis set. With the use of unity-gCP, we have examined a systematic set of medium-sized basis sets, and we find 6-31+G(2d) to be the optimal balance between accuracy and computational efficiency. On the other hand, less balanced basis sets, even larger ones, can show significantly worse accuracy; the inclusion of gCP may even lead to severe overcorrections. Thus, sufficient validations would be imperative before the general application of gCP for a particular basis set. For 6-31+G(2d), a welcoming finding is that its gCP has small magnitudes, and thus, it also yields adequate results without gCP corrections. This observation echoes that for the ωB97X-3c method, which uses an optimized double-ζ basis set (vDZP) without the inclusion of gCP. In an attempt to improve vDZP by mimicking the somewhat better-performing 6-31+G(2d), we partially decontract the outer functions of vDZP. The resulting basis set, which we termed vDZ+(2d), generally yields improved results. Overall, the vDZP and the new vDZ+(2d) basis sets pave a way for obtaining reasonable results more efficiently for a wide range of systems than the practice of using a triple- or quadruple-ζ basis set in DFT calculations.
在本研究中,我们检查了各种小基组及其对 DFT 计算的几何平衡(gCP)修正的性能。原始的 gCP 修正方案包括针对每种方法和基组的四个可调节参数,但我们发现使用单个缩放参数也可以得到合理的结果。我们将这种简化方案称为单位-gCP,可以直接应用于为任意基组设计合理的修正。使用单位-gCP,我们检查了一套系统的中等大小的基组,发现 6-31+G(2d) 在准确性和计算效率之间达到了最佳平衡。另一方面,即使是更不平衡的基组,甚至更大的基组,也可能显示出明显较差的准确性;gCP 的包含甚至可能导致严重的过度修正。因此,在普遍应用 gCP 进行特定基组的计算之前,需要进行充分的验证。对于 6-31+G(2d),一个令人欣慰的发现是,它的 gCP 幅度较小,因此,即使没有 gCP 修正,它也能得到足够的结果。这一观察结果与 ωB97X-3c 方法相呼应,该方法使用没有包含 gCP 的优化的双 ζ 基组(vDZP)。为了通过模仿性能稍好的 6-31+G(2d)来改进 vDZP,我们部分地去收缩 vDZP 的外部函数。得到的基组,我们称为 vDZ+(2d),通常会得到改进的结果。总的来说,vDZP 和新的 vDZ+(2d)基组为广泛的体系获得更合理的结果铺平了道路,比在 DFT 计算中使用三或四 ζ 基组的实践更有效。