Toyota Physical and Chemical Research Institute, Nagakute 480-1192, Japan.
Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.
J Chem Phys. 2023 Jun 14;158(22). doi: 10.1063/5.0155143.
We develop a statistical mechanical theory on clathrate hydrates in order to explore the phase behaviors of clathrate hydrates containing two kinds of guest species and apply it to CH4-CO2 binary hydrates. The two boundaries separating water and hydrate and hydrate and guest fluid mixtures are estimated, which are extended to the lower temperature and the higher pressure region far distant from the three-phase coexisting conditions. The chemical potentials of individual guest components can be calculated from free energies of cage occupations, which are available from intermolecular interactions between host water and guest molecules. This allows us to derive all thermodynamic properties pertinent to the phase behaviors in the whole space of thermodynamic variables of temperature, pressure, and guest compositions. It is found that the phase boundaries of CH4-CO2 binary hydrates with water and with fluid mixtures locate between simple CH4 and CO2 hydrates, but the composition ratios of CH4 guests in hydrates are disproportional to those in fluid mixtures. Such differences arise from the affinities of each guest species to the large and small cages of CS-I hydrates and significantly affect occupation of each cage type, which results in a deviation of the guest composition in hydrates from that in fluid on the two-phase equilibrium conditions. The present method provides a basis for the evaluation of the efficiency of the guest CH4 replacement to CO2 at the thermodynamic limit.
我们开发了一种关于笼形水合物的统计力学理论,以探索包含两种客体物种的笼形水合物的相行为,并将其应用于 CH4-CO2 二元水合物。估计了将水和水合物以及水合物和客体流体混合物分离的两个边界,将其扩展到远离三相共存条件的更低温度和更高压力区域。可以从主体水和客体分子之间的分子间相互作用获得笼占据的自由能,从而计算出各个客体组分的化学势。这使我们能够从整个温度、压力和客体组成的热力学变量空间中得出与相行为有关的所有热力学性质。结果表明,CH4-CO2 二元水合物与水和流体混合物的相边界位于简单的 CH4 和 CO2 水合物之间,但水合物中 CH4 客体的组成比例与流体混合物中的不成比例。这种差异源于每种客体物种对 CS-I 水合物的大笼和小笼的亲和力,并显著影响每个笼型的占据,从而导致水合物中客体的组成偏离两相平衡条件下流体中的组成。本方法为在热力学极限下评估客体 CH4 对 CO2 的置换效率提供了基础。