Borrero A, Díaz-Acosta A, Blazquez S, Zerón I M, Algaba J, Conde M M, Blas F J
Laboratorio de Simulación Molecular y Química Computacional, CIQSO - Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain.
Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Energy Fuels. 2025 Mar 10;39(11):5522-5533. doi: 10.1021/acs.energyfuels.5c00174. eCollection 2025 Mar 20.
In this work, the cryoscopic decrease effect, as a function of the NaCl concentration, on the carbon dioxide (CO) hydrate dissociation line conditions was determined through molecular dynamic simulations. In particular, we have determined the three-phase (solid hydrate-aqueous phase-liquid CO) coexistence temperature at 100, 400, and 1000 bar at several initial NaCl concentrations in the aqueous phase, from 0.0 to 3.0 m, using the direct-coexistence technique. We used the well-known TIP4P/2005 and TraPPe force fields for water and CO molecules, respectively. Also, the water-salt interactions were described using the Madrid-2019 force field, which has been specifically developed for various salts in combination with the TIP4P/2005 water model. According to the results obtained in this work, the dissociation temperature of the CO hydrate decreases when the NaCl concentration in the initial aqueous phase increases. The results obtained are in excellent agreement with the experimental data reported in the literature. We have also observed how the dynamics of melting and growth of the CO hydrate becomes slower when the NaCl concentration is increased. As a consequence, longer simulation times (on the order of dozens of microseconds) are necessary when the NaCl concentration increases. Finally, we have also analyzed finite-size effects on the three-phase coexistence temperature of these systems by performing simulations at 400 bar with two different system sizes at two different NaCl concentrations (0.0 and 3.0 m). Non-negligible deviations have been found between the results obtained from the two system sizes.
在本研究中,通过分子动力学模拟确定了作为氯化钠浓度函数的冰点降低效应,对二氧化碳(CO)水合物解离线条件的影响。具体而言,我们使用直接共存技术,在水相中初始氯化钠浓度从0.0至3.0 m的情况下,确定了在100、400和1000 bar下三相(固体水合物 - 水相 - 液态CO)共存温度。我们分别对水分子和CO分子使用了著名的TIP4P/2005和TraPPe力场。此外,水 - 盐相互作用使用马德里 - 2019力场进行描述,该力场是专门结合TIP4P/2005水模型针对各种盐开发的。根据本研究获得的结果,当初始水相中氯化钠浓度增加时,CO水合物的解离温度降低。所得结果与文献报道的实验数据高度吻合。我们还观察到,当氯化钠浓度增加时,CO水合物的熔化和生长动力学变得更慢。因此,当氯化钠浓度增加时,需要更长的模拟时间(几十微秒量级)。最后,我们还通过在400 bar下对两种不同系统尺寸、两种不同氯化钠浓度(0.0和3.0 m)进行模拟,分析了有限尺寸效应对这些系统三相共存温度的影响。在两种系统尺寸获得的结果之间发现了不可忽略的偏差。