State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China.
Water Res. 2023 Aug 1;241:120164. doi: 10.1016/j.watres.2023.120164. Epub 2023 Jun 1.
Heterogeneous catalysts lag far behind their homogeneous counterparts in activating peroxymonosulfate (PMS) for water decontamination due to the low site intrinsic activity and sluggish mass transfer. The single-atom catalyst can bridge the gap between heterogeneous and homogeneous catalysts, but the difficulty to break scaling relations originating from the site monotony restricts further efficiency upgradation. Herein through modulating the crystallinity of NH-UIO-66, a porous carbon support with ultrahigh surface area (1721.71 m g) is obtained to anchor the dual-atom FeCoN site, which exhibits superior turnover frequency over single-atom FeN and CoN sites (13.07 versus 9.97, 9.07 min). The as-synthesized composite thus outperforms the homogeneous catalytic system (Fe+Co) for sulfamethoxazole (SMZ) degradation, and the catalyst-dose-normalized kinetic rate constant (99.26 L min g) exceeds reported values by 1∼2 orders of magnitude. Moreover, only 20 mg of the catalyst can run a fluidized-bed reactor to realize continuous zero discharge of SMZ in multiple actual waters for up to 8.33 h. Unlike all reported reaction routes, the catalysis on the diatomic site follows a new surface collision oxidation path, i.e. the dispersed catalyst adsorbs PMS to generate surface-activated PMS with high potential, which collides with surrounding SMZ and directly seizes electron from it to induce pollutant oxidation. Theoretical calculation indicates that the enhanced activity of FeCoN site stems from the diatomic synergy, leading to stronger PMS adsorption, larger near-Fermi-level density of states and optimal global Gibbs free energy evolution. Overall, this work provides an effective strategy of constructing heterogeneous dual-atom catalyst/PMS process to achieve faster pollution control than homogeneous system, and sheds light on the interatomic synergetic mechanism for PMS activation.
由于低的本征活性和缓慢的传质,多相催化剂在活化过一硫酸盐(PMS)用于水净化方面远远落后于均相催化剂。单原子催化剂可以弥合多相和均相催化剂之间的差距,但源于位点单一性的标度关系难以打破限制了进一步的效率提升。在此,通过调节 NH-UIO-66 的结晶度,获得了具有超高比表面积(1721.71 m g)的多孔碳载体来锚定双原子 FeCoN 位点,其在过一硫酸盐(PMS)转化中的周转频率超过单原子 FeN 和 CoN 位点(13.07 比 9.97、9.07 min)。所合成的复合材料因此优于均相催化体系(Fe+Co)用于磺胺甲恶唑(SMZ)的降解,且催化剂剂量归一化动力学速率常数(99.26 L min g)超过了报道值 1∼2 个数量级。此外,仅 20 mg 的催化剂就可以运行流化床反应器,在多种实际水中连续实现 SMZ 的零排放,持续时间长达 8.33 h。与所有报道的反应途径不同,双原子位点的催化遵循一种新的表面碰撞氧化途径,即分散的催化剂吸附 PMS 生成具有高势能的表面活化 PMS,其与周围的 SMZ 碰撞并直接从其夺取电子以诱导污染物氧化。理论计算表明,FeCoN 位点的增强活性源于双原子协同作用,导致更强的 PMS 吸附、更大的近费米能级态密度和最佳的全局吉布斯自由能演化。总的来说,这项工作提供了一种构建多相双原子催化剂/PMS 工艺的有效策略,以实现比均相体系更快的污染控制,并揭示了 PMS 活化的原子间协同机制。