Suppr超能文献

多相TiO中能带理论揭示的正电荷空穴及其微观电磁损耗机制探索

Positive Charge Holes Revealed by Energy Band Theory in Multiphase Ti O and Exploration of its Microscopic Electromagnetic Loss Mechanism.

作者信息

Li Yang, Qing Yuchang, Cao Yaru, Luo Fa, Wu Hongjing

机构信息

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

出版信息

Small. 2023 Oct;19(41):e2302769. doi: 10.1002/smll.202302769. Epub 2023 Jun 9.

Abstract

Although numerous experimental investigations have been carried out on the problem of defect engineering in semiconductor absorbers, the relationship among charge carrier, defects, heterointerfaces, and electromagnetic (EM) wave absorption has not been established systematically. Herein, the new thermodynamic and kinetic control strategy is proposed to establish multiphase Ti O (1 ≤ x ≤ 6) through a hydrogenation calcination. The TiOC-900 composite shows the efficient EM wave absorption capability with a minimum reflection loss (RL ) of -69.6 dB at a thickness of 2.04 mm corresponding to an effective absorption bandwidth (EAB) of 4.0 GHz due to the holes induced conductance loss and heterointerfaces induced interfacial polarization. Benefiting from the controllable preparation of multiphase Ti O , a new pathway is proposed for designing high-efficiency EM wave absorbing semiconducting oxides. The validity of the method for adopting energy band theory to explore the underlying relations among charge carriers, defects, heterointerfaces, and EM properties in multiphase Ti O is demonstrated for the first time, which is of great importance in optimizing the EM wave absorption performance by electronic structure tailoring.

摘要

尽管针对半导体吸收体中的缺陷工程问题已开展了大量实验研究,但尚未系统地建立起载流子、缺陷、异质界面与电磁(EM)波吸收之间的关系。在此,我们提出了一种新的热力学和动力学控制策略,通过氢化煅烧来制备多相TiO (1≤x≤6)。TiOC-900复合材料表现出高效的EM波吸收能力,在厚度为2.04 mm时最小反射损耗(RL)为-69.6 dB,有效吸收带宽(EAB)为4.0 GHz,这归因于空穴诱导的电导损耗和异质界面诱导的界面极化。受益于多相TiO 的可控制备,我们提出了一种设计高效EM波吸收半导体氧化物的新途径。首次证明了采用能带理论探索多相TiO 中载流子、缺陷、异质界面和EM性质之间潜在关系的方法的有效性,这对于通过电子结构剪裁优化EM波吸收性能具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验