Matt Livia, Sedrik Rauno, Bonjour Olivier, Vasiliauskaité Miglé, Jannasch Patric, Vares Lauri
Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
Department of Chemistry, Lund University, P.O. Box 124, Lund 221 00, Sweden.
ACS Sustain Chem Eng. 2023 May 19;11(22):8294-8307. doi: 10.1021/acssuschemeng.3c00747. eCollection 2023 Jun 5.
Reversible crosslinking offers an attractive strategy to modify and improve the properties of polymer materials while concurrently enabling a pathway for chemical recycling. This can, for example, be achieved by incorporating a ketone functionality into the polymer structure to enable post-polymerization crosslinking with dihydrazides. The resulting covalent adaptable network contains acylhydrazone bonds cleavable under acidic conditions, thereby providing reversibility. In the present work, we regioselectively prepare a novel isosorbide monomethacrylate with a pendant levulinoyl group via a two-step biocatalytic synthesis. Subsequently, a series of copolymers with different contents of the levulinic isosorbide monomer and methyl methacrylate are prepared by radical polymerization. Using dihydrazides, these linear copolymers are then crosslinked via reaction with the ketone groups in the levulinic side chains. Compared to the linear prepolymers, the crosslinked networks exhibit enhanced glass transition temperatures and thermal stability, up to 170 and 286 °C, respectively. Moreover, the dynamic covalent acylhydrazone bonds are efficiently and selectively cleaved under acidic conditions to retrieve the linear polymethacrylates. We next show that recovered polymers can again be crosslinked with adipic dihydrazide, thus demonstrating the circularity of the materials. Consequently, we envision that these novel levulinic isosorbide-based dynamic polymethacrylate networks have great potential in the field of recyclable and reusable biobased thermoset polymers.
可逆交联提供了一种有吸引力的策略,可用于改性和改善聚合物材料的性能,同时为化学循环利用开辟一条途径。例如,这可以通过将酮官能团引入聚合物结构中,以实现与二酰肼的后聚合交联来实现。所得的共价自适应网络包含在酸性条件下可裂解的酰腙键,从而提供可逆性。在本工作中,我们通过两步生物催化合成区域选择性地制备了一种带有乙酰丙酸酰基侧链的新型异山梨醇单甲基丙烯酸酯。随后,通过自由基聚合制备了一系列含有不同含量乙酰丙酸异山梨醇单体和甲基丙烯酸甲酯的共聚物。然后,使用二酰肼,通过与乙酰丙酸侧链中的酮基反应,将这些线性共聚物交联。与线性预聚物相比,交联网络的玻璃化转变温度和热稳定性有所提高,分别高达170℃和286℃。此外,动态共价酰腙键在酸性条件下能有效且选择性地裂解,从而回收线性聚甲基丙烯酸酯。接下来我们表明,回收的聚合物可以再次与己二酸二酰肼交联,从而证明了材料的循环利用性。因此,我们设想这些新型的基于乙酰丙酸异山梨醇的动态聚甲基丙烯酸酯网络在可回收和可重复使用的生物基热固性聚合物领域具有巨大潜力。