Suppr超能文献

运用运动控制原理分析人机界面性能

Using Principles of Motor Control to Analyze Performance of Human Machine Interfaces.

作者信息

Patwardhan Shriniwas, Gladhill Keri Anne, Joiner Wilsaan M, Schofield Jonathon S, Sikdar Siddhartha

机构信息

Department of Bioengineering, George Mason University, Fairfax VA, 22030, USA.

Department of Psychology, George Mason University, Fairfax, VA, 22030, USA.

出版信息

Res Sq. 2023 May 16:rs.3.rs-2763325. doi: 10.21203/rs.3.rs-2763325/v1.

Abstract

There have been significant advances in biosignal extraction techniques to drive external biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control signals are typically derived from biological signals such as myoelectric measurements made either from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With improvements in sensing modalities and control algorithms, it is becoming possible to robustly control the target position of a end effector. It remains largely unknown to what extent these improvements can lead to naturalistic human-like movement. In this paper, we sought to answer this question. We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Previously, we showed that users were able to accurately and precisely perform a virtual target acquisition task using sonomyography. In this work, we investigate the time course of the control trajectories derived from sonomyography. We show that the time course of the sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-to-point arm reaching movements, with similar time to target. In addition, the trajectories based on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the movement distance increased. We believe this is the first evaluation of similarities in control policies in coordinated movements in jointed limbs, and those based on position control signals extracted at the individual muscle level. These results have strong implications for the future development of control paradigms for assistive technologies.

摘要

在生物信号提取技术方面已经取得了重大进展,这些技术可用于驱动外部生物机电设备或用作复杂人机接口的输入。控制信号通常来自生物信号,例如从皮肤表面或皮下进行的肌电测量。其他生物信号传感方式也正在兴起。随着传感方式和控制算法的改进,稳健地控制末端执行器的目标位置变得越来越有可能。这些改进在多大程度上能够带来自然的类人运动,在很大程度上仍然未知。在本文中,我们试图回答这个问题。我们采用了一种基于前臂肌肉连续超声成像的称为超声肌动图的传感范式。与测量电激活并使用提取的信号来确定末端执行器速度的肌电控制策略不同;超声肌动图直接用超声测量肌肉变形,并使用提取的信号按比例控制末端执行器的位置。此前,我们表明用户能够使用超声肌动图准确且精确地执行虚拟目标获取任务。在这项工作中,我们研究了从超声肌动图得出的控制轨迹的时间进程。我们表明,用户在达到虚拟目标时,超声肌动图得出的轨迹的时间进程反映了在生物肢体中观察到的运动学特征所显示的典型轨迹。具体而言,在目标获取任务期间,速度曲线遵循了点对点手臂伸展运动所显示的最小急动轨迹,到达目标的时间相似。此外,随着运动距离增加,基于超声成像的轨迹会导致峰值运动速度出现系统性延迟和缩放。我们认为这是对关节肢体协调运动中的控制策略与基于在单个肌肉水平提取的位置控制信号的控制策略之间相似性的首次评估。这些结果对辅助技术控制范式的未来发展具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf20/10246101/e641002697f8/nihpp-rs2763325v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验