Wu Yuxuan, Chen Zhe Sage
bioRxiv. 2023 May 22:2023.05.19.541436. doi: 10.1101/2023.05.19.541436.
Hippocampal theta (4-10 Hz) oscillations have been identified as traveling waves in both rodents and humans. In freely foraging rodents, the theta traveling wave is a planar wave propagating from the dorsal to ventral hippocampus along the septotemporal axis. Motivated from experimental findings, we develop a spiking neural network of excitatory and inhibitory neurons to generate state-dependent hippocampal traveling waves to improve current mechanistic understanding of propagating waves. Model simulations demonstrate the necessary conditions for generating wave propagation and characterize the traveling wave properties with respect to model parameters, running speed and brain state of the animal. Networks with long-range inhibitory connections are more suitable than networks with long-range excitatory connections. We further generalize the spiking neural network to model traveling waves in the medial entorhinal cortex (MEC) and predict that traveling theta waves in the hippocampus and entorhinal cortex are in sink.
海马体θ波(4 - 10赫兹)振荡在啮齿动物和人类中均被识别为行波。在自由觅食的啮齿动物中,θ波行波是一种沿隔颞轴从背侧海马体向腹侧海马体传播的平面波。基于实验结果,我们构建了一个由兴奋性和抑制性神经元组成的脉冲神经网络,以生成与状态相关的海马体行波,从而增进对传播波的当前机制理解。模型模拟展示了产生波传播的必要条件,并根据模型参数、奔跑速度和动物的脑状态对行波特性进行了表征。具有长程抑制性连接的网络比具有长程兴奋性连接的网络更合适。我们进一步推广了脉冲神经网络,以模拟内嗅皮层(MEC)中的行波,并预测海马体和内嗅皮层中的θ波行波处于汇聚状态。