Suppr超能文献

世界各地的贫穷与富裕看起来都一样吗?一项使用街景图像对来自五个高收入国家的12个城市进行的比较研究。

Do poverty and wealth look the same the world over? A comparative study of 12 cities from five high-income countries using street images.

作者信息

Suel Esra, Muller Emily, Bennett James E, Blakely Tony, Doyle Yvonne, Lynch John, Mackenbach Joreintje D, Middel Ariane, Mizdrak Anja, Nathvani Ricky, Brauer Michael, Ezzati Majid

机构信息

London, UK Centre for Advanced Spatial Analysis (CASA), University College London.

London, UK Department of Epidemiology and Biostatistics, Imperial College London.

出版信息

EPJ Data Sci. 2023;12(1):19. doi: 10.1140/epjds/s13688-023-00394-6. Epub 2023 Jun 7.

Abstract

UNLABELLED

Urbanization and inequalities are two of the major policy themes of our time, intersecting in large cities where social and economic inequalities are particularly pronounced. Large scale street-level images are a source of city-wide visual information and allow for comparative analyses of multiple cities. Computer vision methods based on deep learning applied to street images have been shown to successfully measure inequalities in socioeconomic and environmental features, yet existing work has been within specific geographies and have not looked at how visual environments compare across different cities and countries. In this study, we aim to apply existing methods to understand whether, and to what extent, poor and wealthy groups live in visually similar neighborhoods across cities and countries. We present novel insights on similarity of neighborhoods using street-level images and deep learning methods. We analyzed 7.2 million images from 12 cities in five high-income countries, home to more than 85 million people: Auckland (New Zealand), Sydney (Australia), Toronto and Vancouver (Canada), Atlanta, Boston, Chicago, Los Angeles, New York, San Francisco, and Washington D.C. (United States of America), and London (United Kingdom). Visual features associated with neighborhood disadvantage are more distinct and unique to each city than those associated with affluence. For example, from what is visible from street images, high density poor neighborhoods located near the city center (e.g., in London) are visually distinct from poor suburban neighborhoods characterized by lower density and lower accessibility (e.g., in Atlanta). This suggests that differences between two cities is also driven by historical factors, policies, and local geography. Our results also have implications for image-based measures of inequality in cities especially when trained on data from cities that are visually distinct from target cities. We showed that these are more prone to errors for disadvantaged areas especially when transferring across cities, suggesting more attention needs to be paid to improving methods for capturing heterogeneity in poor environment across cities around the world.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1140/epjds/s13688-023-00394-6.

摘要

未标注

城市化和不平等是我们这个时代的两个主要政策主题,在社会和经济不平等尤为明显的大城市中相互交织。大规模的街景图像是城市范围视觉信息的来源,可用于对多个城市进行比较分析。已证明,将基于深度学习的计算机视觉方法应用于街景图像能够成功测量社会经济和环境特征方面的不平等,但现有工作局限于特定地理区域,尚未研究不同城市和国家的视觉环境如何进行比较。在本研究中,我们旨在应用现有方法来了解贫困和富裕群体在不同城市和国家中是否生活在视觉上相似的社区,以及在多大程度上如此。我们使用街景图像和深度学习方法,对社区相似性提出了新颖的见解。我们分析了来自五个高收入国家12个城市的720万张图像,这些城市的人口超过8500万:奥克兰(新西兰)、悉尼(澳大利亚)、多伦多和温哥华(加拿大)、亚特兰大、波士顿、芝加哥、洛杉矶、纽约、旧金山和华盛顿特区(美利坚合众国)以及伦敦(英国)。与社区劣势相关的视觉特征比与富裕相关的视觉特征在每个城市中更具独特性。例如,从街景图像中可见,位于市中心附近的高密度贫困社区(如伦敦)在视觉上与以低密度和低可达性为特征的郊区贫困社区(如亚特兰大)不同。这表明两个城市之间的差异也受到历史因素、政策和当地地理的驱动。我们的结果对于基于图像的城市不平等测量也具有启示意义,特别是当在与目标城市视觉上不同的城市数据上进行训练时。我们表明,这些方法在弱势群体居住地区更容易出错,尤其是在跨城市转移时,这表明需要更加关注改进方法,以捕捉世界各地贫困环境中的异质性。

补充信息

在线版本包含补充材料,可在10.1140/epjds/s13688 - 023 - 00394 - 6获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b26b/10247837/6a2b71f4cdcc/13688_2023_394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验