Chen Haotian, Barton Samuel, Yang Minjun, Rickaby Rosalind E M, Bouman Heather A, Compton Richard G
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
Department of Earth Sciences, University of Oxford South Parks Road Oxford OX1 3AN UK.
Chem Sci. 2023 May 2;14(22):5872-5879. doi: 10.1039/d3sc01741a. eCollection 2023 Jun 7.
Marine phytoplankton is extremely diverse. Counting and characterising phytoplankton is essential for understanding climate change and ocean health not least since phytoplankton extensively biomineralize carbon dioxide whilst generating 50% of the planet's oxygen. We report the use of fluoro-electrochemical microscopy to distinguish different taxonomies of phytoplankton by the quenching of their chlorophyll-a fluorescence using chemical species oxidatively electrogenerated in seawater. The rate of chlorophyll-a quenching of each cell is characteristic of the species-specific structural composition and cellular content. But with increasing diversity and extent of phytoplankton species under study, human interpretation and distinction of the resulting fluorescence transients becomes increasingly and prohibitively difficult. Thus, we further report a neural network to analyse these fluorescence transients, with an accuracy >95% classifying 29 phytoplankton strains to their taxonomic orders. This method transcends the state-of-the-art. The success of the fluoro-electrochemical microscopy combined with AI provides a novel, flexible and highly granular solution to phytoplankton classification and is adaptable for autonomous ocean monitoring.
海洋浮游植物种类极其多样。对浮游植物进行计数和特征描述对于理解气候变化和海洋健康至关重要,这尤其是因为浮游植物在大量生物矿化二氧化碳的同时,产生了地球上50%的氧气。我们报告了使用荧光电化学显微镜,通过利用海水中氧化电生成的化学物质淬灭浮游植物叶绿素a荧光来区分不同分类学的浮游植物。每个细胞的叶绿素a淬灭速率是物种特异性结构组成和细胞内容物的特征。但是,随着所研究的浮游植物物种多样性和范围的增加,人工解读和区分由此产生的荧光瞬变变得越来越困难且令人望而却步。因此,我们进一步报告了一种神经网络来分析这些荧光瞬变,其将29种浮游植物菌株分类到它们的分类目时的准确率>95%。该方法超越了现有技术水平。荧光电化学显微镜与人工智能相结合的成功为浮游植物分类提供了一种新颖、灵活且粒度很高的解决方案,并且适用于自主海洋监测。