Suppr超能文献

浮游植物生长速率建模:光谱细胞化学分型能否优于生理预测指标?

Phytoplankton growth rate modelling: can spectroscopic cell chemotyping be superior to physiological predictors?

作者信息

Fanesi Andrea, Wagner Heiko, Wilhelm Christian

机构信息

Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.

Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany

出版信息

Proc Biol Sci. 2017 Feb 8;284(1848). doi: 10.1098/rspb.2016.1956.

Abstract

Climate change has a strong impact on phytoplankton communities and water quality. However, the development of robust techniques to assess phytoplankton growth is still in progress. In this study, the growth rate of phytoplankton cells grown at different temperatures was modelled based on conventional physiological traits (e.g. chlorophyll, carbon and photosynthetic parameters) using the partial least square regression (PLSR) algorithm and compared with a new approach combining Fourier transform infrared-spectroscopy and PLSR. In this second model, it is assumed that the macromolecular composition of phytoplankton cells represents an intracellular marker for growth. The models have comparable high predictive power (R > 0.8) and low error in predicting new observations. Interestingly, not all of the predictors present the same weight in the modelling of growth rate. A set of specific parameters, such as non-photochemical fluorescence quenching (NPQ) and the quantum yield of carbon production in the first model, and lipid, protein and carbohydrate contents for the second one, strongly covary with cell growth rate regardless of the taxonomic position of the phytoplankton species investigated. This reflects a set of specific physiological adjustments covarying with growth rate, conserved among taxonomically distant algal species that might be used as guidelines for the improvement of modern primary production models. The high predictive power of both sets of cellular traits for growth rate is of great importance for applied phycological studies. Our approach may find application as a quality control tool for the monitoring of phytoplankton populations in natural communities or in photobioreactors.

摘要

气候变化对浮游植物群落和水质有强烈影响。然而,用于评估浮游植物生长的可靠技术仍在发展之中。在本研究中,利用偏最小二乘回归(PLSR)算法,基于常规生理特征(如叶绿素、碳和光合参数)对在不同温度下生长的浮游植物细胞的生长速率进行建模,并与一种将傅里叶变换红外光谱和PLSR相结合的新方法进行比较。在第二个模型中,假定浮游植物细胞的大分子组成代表生长的细胞内标志物。这些模型具有相当高的预测能力(R>0.8),并且在预测新观测值时误差较低。有趣的是,并非所有预测变量在生长速率建模中都具有相同的权重。一组特定参数,如第一个模型中的非光化学荧光猝灭(NPQ)和碳生产的量子产率,以及第二个模型中的脂质、蛋白质和碳水化合物含量,无论所研究的浮游植物物种的分类地位如何,都与细胞生长速率密切相关。这反映了一组与生长速率相关的特定生理调节,在分类学上相距甚远的藻类物种中是保守的,这可能被用作改进现代初级生产模型的指导原则。两组细胞特征对生长速率的高预测能力对于应用藻类学研究非常重要。我们的方法可能作为一种质量控制工具应用于监测自然群落或光生物反应器中的浮游植物种群。

相似文献

3
Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.
Appl Spectrosc. 2018 Mar;72(3):366-377. doi: 10.1177/0003702817728070. Epub 2017 Oct 6.
4
Monitoring cellular C:N ratio in phytoplankton by means of FTIR-spectroscopy.
J Phycol. 2019 Jun;55(3):543-551. doi: 10.1111/jpy.12858. Epub 2019 Apr 29.
5
Title: Freshwater phytoplankton responses to global warming.
J Plant Physiol. 2016 Sep 20;203:127-134. doi: 10.1016/j.jplph.2016.05.018. Epub 2016 Jun 16.
6
Subcommunity FTIR-spectroscopy to determine physiological cell states.
Curr Opin Biotechnol. 2013 Feb;24(1):88-94. doi: 10.1016/j.copbio.2012.09.008. Epub 2012 Oct 8.
8
10
Primary production in a tropical large lake: the role of phytoplankton composition.
Sci Total Environ. 2014 Mar 1;473-474:178-88. doi: 10.1016/j.scitotenv.2013.12.036. Epub 2013 Dec 24.

引用本文的文献

本文引用的文献

1
Title: Freshwater phytoplankton responses to global warming.
J Plant Physiol. 2016 Sep 20;203:127-134. doi: 10.1016/j.jplph.2016.05.018. Epub 2016 Jun 16.
3
THE IMPACT OF NONPHOTOCHEMICAL QUENCHING OF FLUORESCENCE ON THE PHOTON BALANCE IN DIATOMS UNDER DYNAMIC LIGHT CONDITIONS(1).
J Phycol. 2012 Apr;48(2):336-46. doi: 10.1111/j.1529-8817.2012.01128.x. Epub 2012 Mar 19.
5
Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.
Science. 2016 Jan 15;351(6270):264-7. doi: 10.1126/science.aab2213. Epub 2016 Jan 7.
7
Growth Rates of Microbes in the Oceans.
Ann Rev Mar Sci. 2016;8:285-309. doi: 10.1146/annurev-marine-122414-033938. Epub 2015 Jul 17.
8
Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae.
Plant Cell Environ. 2015 Nov;38(11):2313-7. doi: 10.1111/pce.12551. Epub 2015 May 19.
9
Phytoplankton strategies for photosynthetic energy allocation.
Ann Rev Mar Sci. 2015;7:265-97. doi: 10.1146/annurev-marine-010814-015813. Epub 2014 Aug 11.
10
Using Fourier transform IR spectroscopy to analyze biological materials.
Nat Protoc. 2014 Aug;9(8):1771-91. doi: 10.1038/nprot.2014.110. Epub 2014 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验