University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
Department of Physics, International University, Ho Chi Minh City 700000, Vietnam.
J Phys Chem A. 2023 Jun 22;127(24):5222-5230. doi: 10.1021/acs.jpca.3c00993. Epub 2023 Jun 9.
We propose an active-space approximation to reduce the quantum resources required for variational quantum eigensolver (VQE). Starting from the double exponential unitary coupled-cluster ansatz and employing the downfolding technique, we arrive at an effective Hamiltonian for active space composed of the bare Hamiltonian and a correlated potential caused by the internal-external interaction. The correlated potential is obtained from the one-body second-order Møller-Plesset perturbation theory (OBMP2), which is derived using the canonical transformation and cumulant approximation. Considering different systems with singlet and doublet ground states, we examine the accuracy in predicting both energy and density matrix (by evaluating dipole moment). We show that our approach can dramatically outperform the active-space VQE with an uncorrelated Hartree-Fock reference.
我们提出了一种活动空间逼近方法,以减少变分量子本征求解(VQE)所需的量子资源。从双指数幺正耦合簇假设出发,并采用下推技术,我们得到了一个由裸哈密顿量和由内外相互作用引起的相关势组成的活动空间有效哈密顿量。相关势是从单体二级 Møller-Plesset 微扰理论(OBMP2)中得到的,该理论是通过正则变换和累积近似得到的。考虑到具有单重态和双重态基态的不同系统,我们通过评估偶极矩来检验预测能量和密度矩阵的准确性。我们表明,与不相关的哈特ree-fock 参考相比,我们的方法可以显著提高活动空间 VQE 的性能。