Human Development and Family Studies, Pennsylvania State University.
Department of Cognitive Sciences, University of California, Irvine.
Multivariate Behav Res. 2024 Nov-Dec;59(6):1148-1158. doi: 10.1080/00273171.2023.2214890. Epub 2023 Jun 9.
Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis testing framework. In this framework, we are limited to rejecting the null hypothesis or failing to reject the null - we can never validly accept the null hypothesis of no Granger causality. This is poorly suited for many common purposes, including evidence integration, feature selection, and other cases where it is useful to express evidence against, rather than for, the existence of an association. Here we derive and implement the Bayes factor for Granger causality in a multilevel modeling framework. This Bayes factor summarizes information in the data in terms of a continuously scaled evidence ratio between the presence of Granger causality and its absence. We also introduce this procedure for the multilevel generalization of Granger causality testing. This facilitates inference when information is scarce or noisy or if we are interested primarily in population-level trends. We illustrate our approach with an application on exploring causal relationships in affect using a daily life study.
格兰杰因果关系检验依赖于估计一个时间序列的动态来预测另一个时间序列的动态。用于这种时间预测因果关系的典型检验基于拟合多元时间序列模型,并被置于经典的零假设检验框架中。在这个框架中,我们仅限于拒绝零假设或未能拒绝零假设——我们永远不能有效地接受没有格兰杰因果关系的零假设。这对于许多常见的目的来说是不合适的,包括证据综合、特征选择和其他情况下,表达对关联存在的证据是有用的,而不是表达对关联存在的证据。在这里,我们在多层次建模框架中推导出并实现了格兰杰因果关系的贝叶斯因子。这个贝叶斯因子根据存在格兰杰因果关系和不存在格兰杰因果关系之间的连续标度证据比,总结了数据中的信息。我们还为格兰杰因果关系检验的多层次推广引入了这个程序。当信息稀缺或嘈杂,或者我们主要对群体水平的趋势感兴趣时,这有助于进行推理。我们使用日常生活研究中探索情感因果关系的应用来说明我们的方法。