Zhao Yanhong, Hu Zhuang, Fan Changling, Gao Peng, Zhang Ruisheng, Liu Zhixiao, Liu Jinshui, Liu Jilei
College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, P. R. China.
Small. 2023 Oct;19(41):e2303296. doi: 10.1002/smll.202303296. Epub 2023 Jun 9.
Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the CN• or CC• radicals generated through the conversion of nitrile intermediates in the pyrolysis process. This greatly enhances the rate capability (192.8 mAh g at 5.0 A g ) and ultra-long cycle stability (233.3 mAh g after 2000 cycles at 0.5 A g ). In situ Raman spectroscopy, ex situ X-ray diffraction and X-ray photoelectron spectroscopy analysis in combination with comprehensive electrochemical characterizations, reveal that the interlayer insertion coordinated quasi-metallic sodium storage in the low potential plateau region and adsorption storage in the high potential sloping region. The first-principles density functional theory calculations further demonstrate strong coordination effect on nitrogen defect sites to capture sodium, especially with pyrrolic N, uncovering the formation mechanism of quasi-metallic bond in the sodium storage. This work provides new insights into the sodium storage mechanism of high-performance carbonaceous materials, and offers new opportunities for better design of hard carbon anode.
硬碳已成为钠离子电池最具潜力的负极候选材料,但倍率性能差和循环寿命短仍是关键问题。在这项工作中,以羧甲基纤维素钠为前驱体,在石墨相氮化碳的辅助下,构建了具有丰富缺陷和扩大层间距的氮掺杂硬碳。通过热解过程中腈中间体转化产生的CN•或CC•自由基实现了氮掺杂纳米片结构的形成。这极大地提高了倍率性能(在5.0 A g 时为192.8 mAh g )和超长循环稳定性(在0.5 A g 下循环2000次后为233.3 mAh g )。原位拉曼光谱、非原位X射线衍射和X射线光电子能谱分析结合综合电化学表征表明,在低电位平台区存在层间插入协同准金属钠存储,在高电位倾斜区存在吸附存储。第一性原理密度泛函理论计算进一步证明了氮缺陷位点对捕获钠有很强的配位作用,尤其是对吡咯氮,揭示了钠存储中准金属键的形成机制。这项工作为高性能碳质材料的钠存储机制提供了新的见解,并为硬碳负极的更好设计提供了新的机会。