State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29252-29258. doi: 10.1021/acsami.3c01422. Epub 2023 Jun 9.
Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of on test strips enabled a quick naked-eye sequential sensing of Al and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.
具有明确纳米腔的配位笼是一类很有前途的用于分子识别和传感的超分子材料。然而,它们在顺序检测多种类型污染物方面的应用是非常需要的,但却受到极大的限制和挑战。在此,我们展示了一种简便的策略,用于开发用于顺序检测环境污染物铝离子和呋喃妥因的超分子荧光传感器。配位笼()采用具有占据在面上的三苯胺发色团的八面体结构,由于苯环的分子内旋转,在溶液中具有微弱的发射。在连续感应 Al 和呋喃妥因(一种抗菌药物)时,表现出灵敏和选择性的荧光“关-开-关”过程。这些顺序检测过程具有高度的抗干扰能力,并且可以用肉眼观察到。机理研究表明,荧光开关可以通过调节苯环的分子内旋转程度和分子间电荷转移的途径来控制,这与主客体相互作用有关。此外,在试带上制备的,使得能够在几秒钟内快速进行肉眼可见的 Al 和呋喃妥因的顺序感应。因此,这种新型超分子荧光“关-开-关”传感平台为开发用于监测环境污染的超分子功能材料提供了一种新方法。