Suppr超能文献

可控配位驱动自组装:从离散金属笼到无限基于笼的框架。

Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.

机构信息

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, P. R. China.

出版信息

Acc Chem Res. 2015 Feb 17;48(2):201-10. doi: 10.1021/ar5003076. Epub 2014 Dec 17.

Abstract

CONSPECTUS

Nanosized supramolecular metallocages have a unique self-assembly process that allows chemists to both understand and control it. In addition, well-defined cavities of such supramolecular aggregates have various attractive applications including storage, separation, catalysis, recognition, drug delivery, and many others. Coordination-driven self-assembly of nanosized supramolecular metallocages is a powerful methodology to construct supramolecular metallocages with considerable size and desirable shapes. In this Account, we summarize our recent research on controllable coordination-driven assembly of supramolecular metallocages and infinite cage-based frameworks. To this end, we have chosen flexible ligands that can adopt various conformations and metal ions with suitable coordination sites for the rational design and assembly of metal-organic supramolecular ensembles. This has resulted in various types of metallocages including M3L2, M6L8, M6L4, and M12L8 with different sizes and shapes. Because the kinds of metal geometries are limited, we have found that we can replace single metal ions with metal clusters to alternatively increase molecular diversity and complexity. There are two clear-cut merits of this strategy. First, metal clusters are much bigger than single metal ions, which helps in the construction and stabilization of large metallocages, especially nanosized cages. Second, metal clusters can generate diverse assembly modes that chemists could not synthesize with single metal ions. This allows us to obtain a series of unprecedented supramolecular metallocages. The large cavities and potential unsaturated coordination sites of these discrete supramolecular cages offer opportunities to construct infinite cage-based frameworks. This in turn can offer us a new avenue to understand self-assembly and realize certain various functionalities. We introduce two types of infinite cage-based frameworks here: cage-based coordination polymers and cage-based polycatenanes, which we can construct through coordination bonds and mechanical bonds, respectively. Through either directly linking the unsaturated coordination sites of metallocages or replacing the labile terminal ligands with bridging ligands, we can produce infinite cage-based frameworks based on coordination bonds. We introduce several interesting cage-based coordination polymers, including a single-crystal-to-single-crystal transformation from a M6L8 cage to an infinite cage-based chain. Compared with discrete metallocages, these kinds of materials can give us higher structural stability and complexity, favoring the applications of metallocages. In addition, we discuss how we can use mechanical bonds, such as interlocking and interpenetrating, to construct extended cage-based frameworks. So far, study in this field has focused on polycatenanes constructed from M6L4 and M12L8 cages, as well as a controllable and dynamic self-assembly based on M6L4 metallocages. We also discuss cage-based polycatenanes, which can give dynamic properties to discrete metallocages. We hope that our investigations will bring new insights to the world of the supramolecular metallocages by enlarging its breadth and encourage us to devote more effort to this blossoming field in the future.

摘要

概述

纳米级超分子金属笼具有独特的自组装过程,使化学家能够理解和控制它。此外,这种超分子聚集体的定义明确的腔具有各种有吸引力的应用,包括存储、分离、催化、识别、药物输送等。纳米级超分子金属笼的配位驱动自组装是构建具有相当尺寸和理想形状的超分子金属笼的强大方法。在本报告中,我们总结了我们最近在可控配位驱动组装超分子金属笼和无限笼状框架方面的研究。为此,我们选择了可以采用各种构象的柔性配体和具有合适配位位点的金属离子,以进行金属有机超分子聚集体的合理设计和组装。这导致了各种类型的金属笼,包括具有不同尺寸和形状的 M3L2、M6L8、M6L4 和 M12L8。由于金属几何形状的种类有限,我们发现我们可以用金属簇来代替单个金属离子,从而增加分子多样性和复杂性。该策略有两个明显的优点。首先,金属簇比单个金属离子大得多,这有助于构建和稳定大金属笼,特别是纳米笼。其次,金属簇可以产生化学家用单个金属离子无法合成的多种组装模式。这使我们能够获得一系列前所未有的超分子金属笼。这些离散超分子笼的大空腔和潜在的不饱和配位位点为构建无限笼状框架提供了机会。这反过来又为我们提供了理解自组装和实现各种功能的新途径。我们在这里介绍两种类型的无限笼状框架:基于笼的配位聚合物和基于笼的多轮烷,我们可以分别通过配位键和机械键来构建。通过直接连接金属笼的不饱和配位位点或用桥连配体代替不稳定的端基配体,我们可以基于配位键生成无限笼状框架。我们介绍了几种有趣的基于笼的配位聚合物,包括从 M6L8 笼到无限笼状链的单晶到单晶的转变。与离散金属笼相比,这些材料可以为我们提供更高的结构稳定性和复杂性,有利于金属笼的应用。此外,我们还讨论了如何使用机械键,如互锁和互穿,来构建扩展的笼状框架。到目前为止,该领域的研究主要集中在基于 M6L4 和 M12L8 笼的多轮烷以及基于 M6L4 金属笼的可控和动态自组装上。我们还讨论了基于笼的多轮烷,它可以为离散金属笼赋予动态性质。我们希望我们的研究能够通过扩大其广度为超分子金属笼领域带来新的见解,并鼓励我们在未来投入更多精力研究这一蓬勃发展的领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验