Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.
Biochemistry. 2023 Jul 4;62(13):2079-2092. doi: 10.1021/acs.biochem.3c00160. Epub 2023 Jun 9.
Pistol ribozyme (Psr) is a distinct class of small endonucleolytic ribozymes, which are important experimental systems for defining fundamental principles of RNA catalysis and designing valuable tools in biotechnology. High-resolution structures of Psr, extensive structure-function studies, and computation support a mechanism involving one or more catalytic guanosine nucleobases acting as a general base and divalent metal ion-bound water acting as an acid to catalyze RNA 2'--transphosphorylation. Yet, for a wide range of pH and metal ion concentrations, the rate of Psr catalysis is too fast to measure manually and the reaction steps that limit catalysis are not well understood. Here, we use stopped-flow fluorescence spectroscopy to evaluate Psr temperature dependence, solvent H/D isotope effects, and divalent metal ion affinity and specificity unconstrained by limitations due to fast kinetics. The results show that Psr catalysis is characterized by small apparent activation enthalpy and entropy changes and minimal transition state H/D fractionation, suggesting that one or more pre-equilibrium steps rather than chemistry is rate limiting. Quantitative analyses of divalent ion dependence confirm that metal aquo ion p correlates with higher rates of catalysis independent of differences in ion binding affinity. However, ambiguity regarding the rate-limiting step and similar correlation with related attributes such as ionic radius and hydration free energy complicate a definitive mechanistic interpretation. These new data provide a framework for further interrogation of Psr transition state stabilization and show how thermal instability, metal ion insolubility at optimal pH, and pre-equilibrium steps such as ion binding and folding limit the catalytic power of Psr suggesting potential strategies for further optimization.
手枪核酶(Psr)是一类独特的小核酶,它是确定 RNA 催化基本原理和设计生物技术有价值工具的重要实验系统。Psr 的高分辨率结构、广泛的结构功能研究以及计算支持了一种机制,其中一个或多个催化鸟嘌呤核苷碱基作为通用碱基,二价金属离子结合的水分子作为酸来催化 RNA 的 2'--转磷酸化。然而,对于广泛的 pH 值和金属离子浓度范围,Psr 催化的速率太快而无法手动测量,并且限制催化的反应步骤还不是很清楚。在这里,我们使用停流荧光光谱法来评估 Psr 的温度依赖性、溶剂 H/D 同位素效应以及不受快速动力学限制的二价金属离子亲和力和特异性。结果表明,Psr 催化的特点是表观活化焓和熵变化较小,过渡态 H/D 分馏最小,这表明一个或多个预平衡步骤而不是化学是限速步骤。对二价离子依赖性的定量分析证实,金属水合离子 p 与更高的催化速率相关,而与离子结合亲和力的差异无关。然而,对于限速步骤的模糊性以及与相关属性(如离子半径和水合自由能)的相似相关性,使得对其进行明确的机制解释变得复杂。这些新数据为进一步研究 Psr 过渡态稳定性提供了框架,并展示了热不稳定性、最佳 pH 值下金属离子的不溶性以及离子结合和折叠等预平衡步骤如何限制 Psr 的催化能力,这表明了进一步优化的潜在策略。