文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算酶建模的展望:从机制到设计与药物开发

Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.

作者信息

Nam Kwangho, Shao Yihan, Major Dan T, Wolf-Watz Magnus

机构信息

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019-5251, United States.

出版信息

ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.


DOI:10.1021/acsomega.3c09084
PMID:38405524
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10883025/
Abstract

Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.

摘要

理解酶的作用机制对于揭示生命复杂的分子机制至关重要。在本综述中,我们审视了计算酶学领域,突出了支配酶作用机制的关键原理,并讨论了当前面临的挑战和有前景的进展。多年来,计算机模拟在酶作用机制的研究中已变得不可或缺,实验与计算探索的结合如今已成为一种全面的方法,以便深入洞察酶催化作用。众多研究已证明计算机模拟在表征各种酶的反应途径、过渡态、底物选择性、产物分布以及动态构象变化方面的强大作用。然而,在研究复杂的多步反应机制、大规模构象变化和变构调节方面,仍存在重大挑战。除了机制研究之外,计算酶建模已成为计算机辅助酶设计以及合理发现用于靶向治疗的共价药物的重要工具。总体而言,酶设计/工程和共价药物开发能够从我们对酶详细机制的理解中极大受益,比如计算研究揭示的蛋白质动力学、熵贡献和变构作用。预计不同研究方法的这种融合将持续下去,在酶研究中产生协同效应。本综述通过概述不断扩展的酶研究领域,旨在为未来的研究方向提供指导,并推动这一重要且不断发展的领域取得新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/ae24561abf89/ao3c09084_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/680c00a609f4/ao3c09084_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/bf004104fc14/ao3c09084_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/4a82d1b49a17/ao3c09084_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/ae24561abf89/ao3c09084_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/680c00a609f4/ao3c09084_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/bf004104fc14/ao3c09084_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/4a82d1b49a17/ao3c09084_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a9/10883025/ae24561abf89/ao3c09084_0004.jpg

相似文献

[1]
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.

ACS Omega. 2024-2-8

[2]
Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application.

Mol Biotechnol. 2024-12

[3]
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences.

Top Catal. 2022-2

[4]
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

Adv Protein Chem Struct Biol. 2011

[5]
Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches.

J Chem Inf Model. 2023-3-13

[6]
Understanding G Protein-Coupled Receptor Allostery via Molecular Dynamics Simulations: Implications for Drug Discovery.

Methods Mol Biol. 2018

[7]
Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function.

Catalysts. 2017

[8]
Applying Knowledge of Enzyme Biochemistry to the Prediction of Functional Sites for Aiding Drug Discovery.

Curr Top Med Chem. 2017

[9]
New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms.

Acc Chem Res. 2022-4-19

[10]
Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications.

Brief Bioinform. 2020-5-21

引用本文的文献

[1]
Discovery, design, and engineering of enzymes based on molecular retrobiosynthesis.

mLife. 2025-3-28

[2]
A Foundational Shift in Models for Enzyme Function.

J Am Chem Soc. 2025-5-7

[3]
Computation of Protein-Ligand Binding Free Energies with a Quantum Mechanics-Based Mining Minima Algorithm.

J Chem Theory Comput. 2025-4-22

[4]
Fermi calculations enable quick downselection of target genes and process optimization in photosynthetic systems.

Plant Physiol. 2025-7-3

[5]
Mechanistic Perspective on C-N and C-S Bond Construction Catalyzed by Cytochrome P450 Enzymes.

ACS Bio Med Chem Au. 2024-11-27

[6]
Microbial lipases: advances in production, purification, biochemical characterization, and multifaceted applications in industry and medicine.

Microb Cell Fact. 2025-2-12

[7]
Machine Learning Quantum Mechanical/Molecular Mechanical Potentials: Evaluating Transferability in Dihydrofolate Reductase-Catalyzed Reactions.

J Chem Theory Comput. 2025-1-28

[8]
Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation.

Biochemistry. 2025-1-7

[9]
Safety Landscape of Therapeutic Nanozymes and Future Research Directions.

Adv Sci (Weinh). 2024-12

[10]
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.

J Phys Chem B. 2024-10-17

本文引用的文献

[1]
Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release.

J Chem Inf Model. 2024-1-8

[2]
Predicting multiple conformations via sequence clustering and AlphaFold2.

Nature. 2024-1

[3]
Free Energy Profile Decomposition Analysis for QM/MM Simulations of Enzymatic Reactions.

J Chem Theory Comput. 2023-11-28

[4]
Machine Learning-Guided Protein Engineering.

ACS Catal. 2023-10-13

[5]
Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design.

ACS Catal. 2023-10-26

[6]
Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.

J Chem Inf Model. 2023-11-13

[7]
Mechanism-Based Redesign of GAP to Activate Oncogenic Ras.

J Am Chem Soc. 2023-9-20

[8]
Impact of ancestral sequence reconstruction on mechanistic and structural enzymology.

Curr Opin Struct Biol. 2023-10

[9]
Advancements in small molecule drug design: A structural perspective.

Drug Discov Today. 2023-10

[10]
Bridging semiempirical and ab initio QM/MM potentials by Gaussian process regression and its sparse variants for free energy simulation.

J Chem Phys. 2023-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索