Joseph Henry Laboratories of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2023 May 26;130(21):218402. doi: 10.1103/PhysRevLett.130.218402.
The bacterium Myxococcus xanthus produces multicellular droplets called fruiting bodies when starved. These structures form initially through the active dewetting of a vegetative biofilm into surface-associated droplets. This motility-driven aggregation is succeeded by a primitive developmental process in which cells in the droplets mature into nonmotile spores. Here, we use atomic force microscopy to probe the mechanics of these droplets throughout their formation. Using a combination of time- and frequency-domain rheological experiments, we characterize and develop a simple model of the linear viscoelasticity of these aggregates. We then use this model to quantify how cellular behaviors predominant at different developmental times-motility during the dewetting phase and cellular sporulation during later development-manifest as decreased droplet viscosity and increased elasticity, respectively.
当饥饿时,粘细菌会产生被称为子实体的多细胞液滴。这些结构最初通过活跃的去湿作用从营养生物膜中形成表面相关的液滴。这种由运动驱动的聚集之后是一个原始的发育过程,其中液滴中的细胞成熟为非运动性孢子。在这里,我们使用原子力显微镜来探测这些液滴在整个形成过程中的力学特性。通过结合时间和频域流变实验,我们对这些聚集体的线性粘弹性进行了表征和建立了一个简单的模型。然后,我们使用该模型来量化在不同发育时间下占主导地位的细胞行为——去湿阶段的运动性和后期发育过程中的细胞孢子形成——如何分别表现为液滴粘度降低和弹性增加。