Suppr超能文献

HAL-IA:一种基于交互式标注的混合主动学习框架,用于医学图像分割。

HAL-IA: A Hybrid Active Learning framework using Interactive Annotation for medical image segmentation.

机构信息

Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.

Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Med Image Anal. 2023 Aug;88:102862. doi: 10.1016/j.media.2023.102862. Epub 2023 May 30.

Abstract

High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.

摘要

深度学习模型在医学图像分割上的优异性能高度依赖于大量像素级标注数据,但标注工作的成本很高。如何以有限的成本(例如时间)获得医学图像的高精度分割标签成为一个紧迫的问题。主动学习可以降低图像分割的标注成本,但它面临三个挑战:冷启动问题、用于分割任务的有效样本选择策略以及手动标注的负担。在这项工作中,我们提出了一种使用交互式标注的混合主动学习框架(HAL-IA)用于医学图像分割,该框架通过减少标注图像的数量和简化标注过程来降低标注成本。具体来说,我们提出了一种新颖的混合样本选择策略,用于选择对分割模型性能提升最有价值的样本。该策略结合了像素熵、区域一致性和图像多样性,以确保所选样本具有高不确定性和多样性。此外,我们提出了一种热启动初始化策略来构建初始标注数据集,以避免冷启动问题。为了简化手动标注过程,我们提出了一个带有建议超像素的交互式标注模块,只需点击几下即可获得像素级标签。我们在四个医学图像数据集上进行了广泛的分割实验来验证我们提出的框架。实验结果表明,所提出的框架可以用较少的标注数据和交互次数实现高精度的像素级标注和模型,优于其他最先进的方法。我们的方法可以帮助医生高效地获得用于临床分析和诊断的准确医学图像分割结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验