Suppr超能文献

DMSPS:用于涂鸦监督的医学图像分割的动态混合软伪标签监督。

DMSPS: Dynamically mixed soft pseudo-label supervision for scribble-supervised medical image segmentation.

机构信息

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.

出版信息

Med Image Anal. 2024 Oct;97:103274. doi: 10.1016/j.media.2024.103274. Epub 2024 Jul 15.

Abstract

High performance of deep learning on medical image segmentation rely on large-scale pixel-level dense annotations, which poses a substantial burden on medical experts due to the laborious and time-consuming annotation process, particularly for 3D images. To reduce the labeling cost as well as maintain relatively satisfactory segmentation performance, weakly-supervised learning with sparse labels has attained increasing attentions. In this work, we present a scribble-based framework for medical image segmentation, called Dynamically Mixed Soft Pseudo-label Supervision (DMSPS). Concretely, we extend a backbone with an auxiliary decoder to form a dual-branch network to enhance the feature capture capability of the shared encoder. Considering that most pixels do not have labels and hard pseudo-labels tend to be over-confident to result in poor segmentation, we propose to use soft pseudo-labels generated by dynamically mixing the decoders' predictions as auxiliary supervision. To further enhance the model's performance, we adopt a two-stage approach where the sparse scribbles are expanded based on predictions with low uncertainties from the first-stage model, leading to more annotated pixels to train the second-stage model. Experiments on ACDC dataset for cardiac structure segmentation, WORD dataset for 3D abdominal organ segmentation and BraTS2020 dataset for 3D brain tumor segmentation showed that: (1) compared with the baseline, our method improved the average DSC from 50.46% to 89.51%, from 75.46% to 87.56% and from 52.61% to 76.53% on the three datasets, respectively; (2) DMSPS achieved better performance than five state-of-the-art scribble-supervised segmentation methods, and is generalizable to different segmentation backbones. The code is available online at: https://github.com/HiLab-git/DMSPS.

摘要

深度学习在医学图像分割上的优异表现依赖于大规模像素级密集标注,而对于医学专家来说,由于标注过程既繁琐又耗时,因此 3D 图像的标注尤其具有挑战性。为了降低标注成本并保持相对令人满意的分割性能,基于稀疏标签的弱监督学习得到了越来越多的关注。在这项工作中,我们提出了一种基于草图的医学图像分割框架,称为动态混合软伪标签监督(DMSPS)。具体来说,我们通过添加一个辅助解码器来扩展主干网络,形成一个双分支网络,以增强共享编码器的特征捕获能力。考虑到大多数像素没有标签,并且硬伪标签往往过于自信,导致分割效果不佳,我们提出使用由解码器预测动态混合生成的软伪标签作为辅助监督。为了进一步提高模型的性能,我们采用了两阶段方法,即在第一阶段模型的低置信度预测基础上扩展稀疏草图,从而获得更多标注像素来训练第二阶段模型。在 ACDC 数据集上的心脏结构分割、WORD 数据集上的 3D 腹部器官分割和 BraTS2020 数据集上的 3D 脑肿瘤分割的实验表明:(1)与基线相比,我们的方法分别将平均 DSC 从 50.46%提高到 89.51%,从 75.46%提高到 87.56%,从 52.61%提高到 76.53%;(2)DMSPS 的性能优于五种最新的基于草图监督的分割方法,并且可以推广到不同的分割骨干网络。代码可在以下网址获得:https://github.com/HiLab-git/DMSPS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验