Suppr超能文献

带有电机-弹簧共振激励系统的自转旋翼飞行器的设计、建模和实验验证。

Design, modelling, and experimental validation of a self-rotating flapping wing rotorcraft with motor-spring resonance actuation system.

机构信息

School of Aeronautic Science and Engineering, Beihang University, Beijing, People's Republic of China.

Institute of Unmanned System, Beihang University, Beijing, People's Republic of China.

出版信息

Bioinspir Biomim. 2023 Jun 29;18(4). doi: 10.1088/1748-3190/acdd3d.

Abstract

Compared with traditional flapping motion, the flapping wing rotor (FWR) allows rotating freedom by installing the two wings asymmetrically, which introduces rotary motion characteristics and enables the FWR to have higher lift and aerodynamic efficiency at low Reynolds number. However, most of the proposed FWRs contain linkage mechanical transmission structures, the fixed degrees of freedom of which prohibit the wings from achieving variable flapping trajectories, limiting further optimization and controller design of FWRs. In order to fundamentally address the above challenges of FWRs, this paper presents a new type of FWR with two mechanically decoupled wings, which are directly driven by two independent motor-spring resonance actuation systems. The proposed FWR has 12.4 g of system weight and 165-205 mm wingspan. In addition, a theoretical electromechanical model based on the DC motor model and quasi-steady aerodynamic forces is established, and a series of experiments are conducted in order to determine the ideal working point of the proposed FWR. It is notable that both our theoretical model and experiments exhibit uneven rotation of the FWR during flight, i.e. rotation speed dropping in the downstroke and increasing in the upstroke, which further tests the proposed theoretical model and uncovers the relationship between flapping and passive rotation in the FWR. To further validate the performance of the design, free flight tests are conducted, and the proposed FWR demonstrates stable liftoff at the designed working point.

摘要

与传统的扑翼运动相比,扑翼旋翼(FWR)通过不对称地安装两个机翼来实现旋转自由度,这引入了旋转运动特性,并使 FWR 在低雷诺数下具有更高的升力和气动效率。然而,大多数提出的 FWR 都包含连杆机械传动结构,其固定的自由度限制了机翼实现可变的扑翼轨迹,限制了 FWR 的进一步优化和控制器设计。为了从根本上解决 FWR 的上述挑战,本文提出了一种新型的 FWR,它具有两个机械解耦的机翼,由两个独立的电机-弹簧共振驱动系统直接驱动。所提出的 FWR 系统重量为 12.4 克,翼展为 165-205 毫米。此外,建立了一个基于直流电机模型和准稳态气动力的理论机电模型,并进行了一系列实验,以确定所提出的 FWR 的理想工作点。值得注意的是,我们的理论模型和实验都表明 FWR 在飞行过程中存在不均匀的旋转,即在下降冲程中旋转速度下降,在上冲程中旋转速度增加,这进一步验证了所提出的理论模型,并揭示了 FWR 中扑翼和被动旋转之间的关系。为了进一步验证设计的性能,进行了自由飞行测试,所提出的 FWR 在设计的工作点表现出稳定的起飞。

相似文献

7
Aerodynamic effects of flexibility in flapping wings.扑翼的柔性对空气动力学的影响。
J R Soc Interface. 2010 Mar 6;7(44):485-97. doi: 10.1098/rsif.2009.0200. Epub 2009 Aug 19.
8
Scaling of the performance of insect-inspired passive-pitching flapping wings.昆虫启发式被动扑翼的性能缩放。
J R Soc Interface. 2019 Dec;16(161):20190609. doi: 10.1098/rsif.2019.0609. Epub 2019 Dec 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验