Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway.
Free Radic Biol Med. 2023 Aug 20;205:244-261. doi: 10.1016/j.freeradbiomed.2023.05.014. Epub 2023 Jun 8.
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site I in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
心肌缺血再灌注 (IR) 损伤可导致心肌细胞功能障碍。线粒体在心肌细胞再灌注损伤后恢复中起着关键作用。解偶联蛋白 3 (UCP3) 已被提出可减少线粒体活性氧 (ROS) 的产生并促进脂肪酸氧化。由于这两种机制在 IR 损伤后可能具有保护作用,我们研究了野生型和缺乏 UCP3 (UCP3-KO) 的小鼠在 IR 后的功能、线粒体结构和代谢性心脏重塑。结果表明,在离体灌注心脏中,IR 后 UCP3-KO 成年和老年小鼠的梗死面积大于相应的野生型小鼠,并且流出液中的肌酸激酶水平更高,线粒体结构变化更明显。冠状动脉闭塞后再灌注的体内研究证实了 UCP3-KO 心脏的心肌损伤更大。S1QEL,一种抑制复合物 I 中部位 I 超氧化物生成的抑制剂,限制了 UCP3-KO 心脏的梗死面积,表明超氧化物生成的加剧可能是损伤的一个原因。对离体灌注心脏的代谢组学分析证实了报告中的琥珀酸、黄嘌呤和次黄嘌呤在缺血期间的积累,以及无氧葡萄糖利用的转变,这些在再氧合时都恢复了。UCP3-KO 和野生型心脏对缺血和 IR 的代谢反应相似,脂质和能量代谢是受影响最大的途径。IR 后脂肪酸氧化和复合物 I(但不是复合物 II)活性同样受损。总之,我们的结果表明,UCP3 缺乏会促进超氧化物生成的增加和线粒体结构的改变,从而增加心肌对 IR 损伤的易感性。