Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel.
Bone. 2023 Sep;174:116818. doi: 10.1016/j.bone.2023.116818. Epub 2023 Jun 8.
The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including μCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.
附着点结构的标志是包含四个组织区带的 3D 组成和结构梯度 - 肌腱/韧带、未钙化的纤维软骨、钙化的纤维软骨和骨。这种功能梯度适应了钙化骨和未钙化的肌腱/韧带之间的大刚度差异。在这里,我们分析了小鼠跟腱附着点和矿化跟腱的 3D 组织,并与板层骨进行了比较。我们使用了相关的、多尺度的高分辨率体积成像方法,包括具有亚微米分辨率的 μCT 和基于深度学习的图像分割的 FIB-SEM 断层扫描,以及 TEM 和 SEM 成像,来描述生理、年龄相关和异常矿化模式的超微结构特征。我们将这些方法应用于小鼠野生型 (WT) 跟腱附着点组织,以描述在正常钙化纤维软骨中,存在类似于板层骨中观察到的交叉纤维状矿化镶嵌图案,但矿化镶嵌形态和大小的变化更大。我们还研究了 Hyp 小鼠的跟腱附着点结构,Hyp 小鼠是一种遗传性佝偻病 X 连锁低磷血症 (XLH) 的模型,具有矿化附着病。在 Hyp 小鼠的跟腱附着点纤维软骨中,我们发现存在类似于 Hyp 板层骨中发生的缺陷性交叉纤维状矿化镶嵌。在纤维软骨的细胞水平上,与骨不同,骨中发现的增大的破骨细胞矿腔作为骨周细胞病变,WT 和 Hyp 小鼠的成纤维软骨细胞中的矿腔体积没有差异。虽然 WT 和 Hyp 老年小鼠都表现出跟腱中部的异位矿化,但在 Hyp 小鼠中观察到一致的矿化模式缺陷。在 WT 和 Hyp 小鼠的所有检查矿化部位均观察到强烈的骨桥蛋白免疫染色。总的来说,这些新的 3D 超微结构信息描述了附着点、肌腱和骨骼的常见矿化轨迹的细节,而在 Hyp/XLH 中这些轨迹是有缺陷的。