Suppr超能文献

承受线性变化面内分布载荷的超轻蜂窝夹芯板的三维振动理论

A Three-Dimensional Vibration Theory for Ultralight Cellular Sandwich Plates Subjected to Linearly Varying In-Plane Distributed Loads.

作者信息

Li Fei-Hao, Han Bin, Zhang Ai-Hua, Liu Kai, Wang Ying, Lu Tian-Jian

机构信息

The Institute of Xi'an Aerospace Solid Propulsion Technology, Xi'an 710025, China.

National Key Laboratory of Solid Rocket Propulsion, Xi'an 710025, China.

出版信息

Materials (Basel). 2023 May 31;16(11):4086. doi: 10.3390/ma16114086.

Abstract

Thin structural elements such as large-scale covering plates of aerospace protection structures and vertical stabilizers of aircraft are strongly influenced by gravity (and/or acceleration); thus, exploring how the mechanical behaviors of such structures are affected by gravitational field is necessary. Built upon a zigzag displacement model, this study establishes a three-dimensional vibration theory for ultralight cellular-cored sandwich plates subjected to linearly varying in-plane distributed loads (due to, e.g., hyper gravity or acceleration), with the cross-section rotation angle induced by face sheet shearing accounted for. For selected boundary conditions, the theory enables quantifying the influence of core type (e.g., close-celled metal foams, triangular corrugated metal plates, and metal hexagonal honeycombs) on fundamental frequencies of the sandwich plates. For validation, three-dimensional finite element simulations are carried out, with good agreement achieved between theoretical predictions and simulation results. The validated theory is subsequently employed to evaluate how the geometric parameters of metal sandwich core and the mixture of metal cores and composite face sheets influence the fundamental frequencies. Triangular corrugated sandwich plate possesses the highest fundamental frequency, irrespective of boundary conditions. For each type of sandwich plate considered, the presence of in-plane distributed loads significantly affects its fundamental frequencies and modal shapes.

摘要

诸如航空航天防护结构的大型覆盖板和飞机垂直安定面等薄结构元件会受到重力(和/或加速度)的强烈影响;因此,探究此类结构的力学行为如何受引力场影响是很有必要的。基于曲折位移模型,本研究建立了一种超轻型蜂窝芯夹层板的三维振动理论,该夹层板承受线性变化的面内分布载荷(例如,由于超重力或加速度),并考虑了面板剪切引起的横截面旋转角。对于选定的边界条件,该理论能够量化芯材类型(例如,闭孔金属泡沫、三角形波纹金属板和金属六边形蜂窝)对夹层板固有频率的影响。为进行验证,开展了三维有限元模拟,理论预测结果与模拟结果吻合良好。随后,运用经过验证的理论来评估金属夹层芯的几何参数以及金属芯与复合面板的组合如何影响固有频率。无论边界条件如何,三角形波纹夹层板的固有频率最高。对于所考虑的每种类型的夹层板,面内分布载荷的存在会显著影响其固有频率和模态形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d346/10254156/bbabbc24eb53/materials-16-04086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验