Suppr超能文献

硅热还原二氧化硅:一项机器学习研究。

Magnesiothermic Reduction of Silica: A Machine Learning Study.

作者信息

Tang Kai, Rasouli Azam, Safarian Jafar, Ma Xiang, Tranell Gabriella

机构信息

SINTEF AS, Industry Institute, N-7465 Trondheim, Norway.

Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7034 Trondheim, Norway.

出版信息

Materials (Basel). 2023 May 31;16(11):4098. doi: 10.3390/ma16114098.

Abstract

Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO molar ratios (1-4) in the temperature range of 1073 to 1373 K with different reaction times (10-240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.

摘要

在1073至1373K的温度范围内,以不同的反应时间(10 - 240分钟),对不同镁硅摩尔比(1 - 4)的二氧化硅进行镁热还原反应开展了基础实验研究和理论研究。由于金属热还原过程中存在动力学障碍,使用著名的热化学软件FactSage(版本8.2)及其数据库计算出的平衡关系不足以描述实验观察结果。在实验室样品的某些部分可以发现被还原产物包裹的未反应二氧化硅核心。然而,样品的其他部分显示金属热还原几乎完全消失。一些石英颗粒破碎成细块并形成许多微小裂缝。镁反应物能够通过微小的断裂路径渗透到二氧化硅颗粒的核心,从而使反应几乎完全发生。因此,传统的未反应核模型不足以代表这种复杂的反应过程。在本工作中,尝试应用机器学习方法,使用混合数据集来描述复杂的镁热还原反应。除了实验室实验数据外,热化学数据库计算出的平衡关系也作为镁热还原反应的边界条件引入,假设反应时间足够长。鉴于物理信息高斯过程机器(GPM)在描述小数据集时的优势,开发并使用它来描述混合数据。专门为GPM开发了一个复合核,以减轻使用通用核时常见的过拟合问题。用混合数据集训练物理信息高斯过程机器(GPM)得到的回归分数为0.9665。因此,训练后的GPM用于预测镁硅混合物、温度和反应时间对镁热还原产物的影响,这些影响尚未在实验中涉及。额外的实验验证表明,GPM对观测值的插值效果良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccf1/10254381/f96395d4a4b2/materials-16-04098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验