Yan Maximilian, Martell Sarah, Patwardhan Siddharth V, Dasog Mita
Department of Chemistry, Dalhousie University 6243 Alumni Crescent Halifax NS B3H4R2 Canada
Department of Chemical and Biological Engineering, The University of Sheffield Mappin Street Sheffield S1 3JD UK.
Chem Sci. 2024 Sep 10;15(39):15954-67. doi: 10.1039/d4sc04065a.
Porous Si (p-Si) nanomaterials are an exciting class of inexpensive and abundant materials within the field of energy storage. Specifically, p-Si has been explored in battery anodes to improve charge storage capacity, to generate clean fuels through photocatalysis and photoelectrochemical processes, for the stoichiometric conversion of CO to value added chemicals, and as a chemical H storage material. p-Si can be made from synthetic, natural, and waste SiO sources through a facile and inexpensive method called magnesiothermic reduction (MgTR). This yields a material with tunable properties and excellent energy storage capabilities. In order to tune the physical properties that affect performance metrics of p-Si, a deeper understanding of the mechanism of the MgTR and factors affecting it is required. In this perspective, we review the key developments in MgTR and discuss the thermal management strategies used to control the properties of p-Si. Additionally, we explore future research directions and approaches to bridge the gap between laboratory-scale experiments and industrial applications.
多孔硅(p-Si)纳米材料是储能领域一类令人兴奋的廉价且丰富的材料。具体而言,p-Si已被用于电池阳极,以提高电荷存储容量,通过光催化和光电化学过程生成清洁燃料,用于将CO化学计量转化为增值化学品,以及作为化学储氢材料。p-Si可以通过一种简便且廉价的方法——镁热还原(MgTR),由合成、天然和废弃的SiO源制备而成。这会产生一种具有可调性质和出色储能能力的材料。为了调整影响p-Si性能指标的物理性质,需要更深入地了解MgTR的机制及其影响因素。从这个角度出发,我们回顾了MgTR的关键进展,并讨论了用于控制p-Si性质的热管理策略。此外,我们还探索了未来的研究方向和方法,以弥合实验室规模实验与工业应用之间的差距。