Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico.
Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico.
Int J Mol Sci. 2023 May 31;24(11):9557. doi: 10.3390/ijms24119557.
The histidine-containing phosphocarrier (HPr) is a monomeric protein conserved in Gram-positive bacteria, which may be of mesophilic or thermophilic nature. In particular, the HPr protein from the thermophilic organism is a good model system for thermostability studies, since experimental data, such as crystal structure and thermal stability curves, are available. However, its unfolding mechanism at higher temperatures is yet unclear at a molecular level. Therefore, in this work, we researched the thermal stability of this protein using molecular dynamics simulations, subjecting it to five different temperatures during a time span of 1 μs. The analyses of the structural parameters and molecular interactions were compared with those of the mesophilic homologue HPr protein from . Each simulation was run in triplicate using identical conditions for both proteins. The results showed that the two proteins lose stability as the temperature increases, but the mesophilic structure is more affected. We found that the salt bridge network formed by the triad of Glu3-Lys62-Glu36 residues and the salt bridge made up of Asp79-Lys83 ion pair are key factors to keep stable the thermophilic protein, maintaining the hydrophobic core protected and the structure packed. In addition, these molecular interactions neutralize the negative surface charge, acting as "natural molecular staples".
组氨酸磷酸载体(HPr)是一种在革兰氏阳性菌中保守的单体蛋白,可能具有嗜温和嗜热性质。特别是,来自嗜热生物的 HPr 蛋白是热稳定性研究的良好模型系统,因为有实验数据,如晶体结构和热稳定性曲线。然而,其在较高温度下的展开机制在分子水平上尚不清楚。因此,在这项工作中,我们使用分子动力学模拟研究了这种蛋白质的热稳定性,在 1μs 的时间跨度内将其暴露于五种不同的温度下。结构参数和分子相互作用的分析与来自 的同嗜温同源物 HPr 蛋白进行了比较。对于两种蛋白质,每个模拟都使用相同的条件重复运行三次。结果表明,随着温度的升高,两种蛋白质的稳定性都降低,但嗜温结构受影响更大。我们发现,由 Glu3-Lys62-Glu36 残基三联体形成的盐桥网络和由 Asp79-Lys83 离子对组成的盐桥是保持热稳定蛋白稳定的关键因素,保持疏水性核心的保护和结构的包裹。此外,这些分子相互作用中和了负表面电荷,起到了“天然分子固定物”的作用。