Suppr超能文献

通过碳纳米管和氮化硼纳米管的碰撞融合实现硼-碳-氮杂化结构。

Achieving Boron-Carbon-Nitrogen Heterostructures by Collision Fusion of Carbon Nanotubes and Boron Nitride Nanotubes.

机构信息

School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China.

School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210042, China.

出版信息

Molecules. 2023 May 25;28(11):4334. doi: 10.3390/molecules28114334.

Abstract

Heterostructures may exhibit completely new physical properties that may be otherwise absent in their individual component materials. However, how to precisely grow or assemble desired complex heterostructures is still a significant challenge. In this work, the collision dynamics of a carbon nanotube and a boron nitride nanotube under different collision modes were investigated using the self-consistent-charge density-functional tight-binding molecular dynamics method. The energetic stability and electronic structures of the heterostructure after collision were calculated using the first-principles calculations. Five main collision outcomes are observed, that is, two nanotubes can (1) bounce back, (2) connect, (3) fuse into a defect-free BCN heteronanotube with a larger diameter, (4) form a heteronanoribbon of graphene and hexagonal boron nitride and (5) create serious damage after collision. It was found that both the BCN single-wall nanotube and the heteronanoribbon created by collision are the direct band-gap semiconductors with the band gaps of 0.808 eV and 0.544 eV, respectively. These results indicate that collision fusion is a viable method to create various complex heterostructures with new physical properties.

摘要

异质结构可能表现出完全新的物理性质,而这些性质在其单个组成材料中可能不存在。然而,如何精确地生长或组装所需的复杂异质结构仍然是一个重大挑战。在这项工作中,使用自洽电荷密度泛函紧束缚分子动力学方法研究了碳纳米管和氮化硼纳米管在不同碰撞模式下的碰撞动力学。使用第一性原理计算方法计算了碰撞后异质结构的能量稳定性和电子结构。观察到五种主要的碰撞结果,即两个纳米管可以(1)弹回,(2)连接,(3)融合成一个无缺陷的较大直径的 BCN 杂化纳米管,(4)形成石墨烯和六方氮化硼的杂化纳米带,以及(5)碰撞后造成严重损伤。结果表明,BCN 单壁纳米管和碰撞产生的杂化纳米带都是直接带隙半导体,带隙分别为 0.808eV 和 0.544eV。这些结果表明,碰撞融合是一种可行的方法,可以创造具有新物理性质的各种复杂异质结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f08/10254723/1a2637d8ef10/molecules-28-04334-g001.jpg

相似文献

2
Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.
Mater Sci Eng C Mater Biol Appl. 2016 Oct 1;67:98-103. doi: 10.1016/j.msec.2016.04.100. Epub 2016 Apr 29.
3
Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles.
J Biomol Struct Dyn. 2019 Nov;37(18):4852-4862. doi: 10.1080/07391102.2019.1567385. Epub 2019 Feb 5.
4
Electronic properties of single vacancy defect in boron nitride nanoribbons with edge perturbation.
PLoS One. 2024 Aug 9;19(8):e0305555. doi: 10.1371/journal.pone.0305555. eCollection 2024.
5
Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
Nanotechnology. 2008 Mar 5;19(9):095707. doi: 10.1088/0957-4484/19/9/095707. Epub 2008 Feb 12.
6
Field emission properties of carbon nanotubes coated with boron nitride.
J Nanosci Nanotechnol. 2003 Feb-Apr;3(1-2):179-83. doi: 10.1166/jnn.2003.207.
8
Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.
J Mol Model. 2013 Mar;19(3):1259-65. doi: 10.1007/s00894-012-1668-9. Epub 2012 Nov 20.
9
Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes.
Nano Lett. 2008 Feb;8(2):491-4. doi: 10.1021/nl0726151. Epub 2008 Jan 4.
10
First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes.
Langmuir. 2018 Sep 18;34(37):11176-11187. doi: 10.1021/acs.langmuir.8b00856. Epub 2018 Sep 4.

本文引用的文献

1
3
A two-dimensional MXene/BN van der Waals heterostructure as an anode material for lithium-ion batteries.
Phys Chem Chem Phys. 2022 Jun 8;24(22):13713-13719. doi: 10.1039/d1cp05707c.
4
The field-free Josephson diode in a van der Waals heterostructure.
Nature. 2022 Apr;604(7907):653-656. doi: 10.1038/s41586-022-04504-8. Epub 2022 Apr 27.
6
2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges.
Chem Rev. 2022 Mar 23;122(6):6514-6613. doi: 10.1021/acs.chemrev.1c00735. Epub 2022 Feb 8.
7
9
Distinct Chemistries Explain Decoupling of Slip and Wettability in Atomically Smooth Aqueous Interfaces.
J Phys Chem Lett. 2021 Sep 23;12(37):9060-9067. doi: 10.1021/acs.jpclett.1c02828. Epub 2021 Sep 13.
10
Emerging of Heterostructure Materials in Energy Storage: A Review.
Adv Mater. 2021 Jul;33(27):e2100855. doi: 10.1002/adma.202100855. Epub 2021 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验