Suppr超能文献

基于VMD和域自适应迁移学习的掘进机轴承故障诊断方法

Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning.

作者信息

Qu Xiaofei, Zhang Yongkang

机构信息

School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.

出版信息

Sensors (Basel). 2023 May 28;23(11):5134. doi: 10.3390/s23115134.

Abstract

The roadheader is a core piece of equipment for underground mining. The roadheader bearing, as its key component, often works under complex working conditions and bears large radial and axial forces. Its health is critical to efficient and safe underground operation. The early failure of a roadheader bearing has weak impact characteristics and is often submerged in complex and strong background noise. Therefore, a fault diagnosis strategy that combines variational mode decomposition and a domain adaptive convolutional neural network is proposed in this paper. To start with, VMD is utilized to decompose the collected vibration signals to obtain the sub-component IMF. Then, the kurtosis index of IMF is calculated, with the maximum index value chosen as the input of the neural network. A deep transfer learning strategy is introduced to solve the problem of the different distributions of vibration data for roadheader bearings under variable working conditions. This method was implemented in the actual bearing fault diagnosis of a roadheader. The experimental results indicate that the method is superior in terms of diagnostic accuracy and has practical engineering application value.

摘要

掘进机是地下采矿的核心设备。掘进机轴承作为其关键部件,经常在复杂的工作条件下工作,承受着较大的径向和轴向力。其健康状况对于高效、安全的地下作业至关重要。掘进机轴承的早期故障具有微弱的冲击特征,且常被淹没在复杂且强烈的背景噪声中。因此,本文提出了一种结合变分模态分解和域自适应卷积神经网络的故障诊断策略。首先,利用VMD对采集到的振动信号进行分解,得到子分量IMF。然后,计算IMF的峭度指标,选取最大指标值作为神经网络的输入。引入深度迁移学习策略来解决掘进机轴承在不同工况下振动数据分布不同的问题。该方法在掘进机实际轴承故障诊断中得到了应用。实验结果表明,该方法在诊断准确率方面具有优势,具有实际工程应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d99f/10255486/ba0185e0ac29/sensors-23-05134-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验