Suppr超能文献

物联网环境下基于 Dempster-Shafer 理论的多传感器数据融合:一种改进的基于证据距离的方法。

Multisensor Data Fusion in IoT Environments in Dempster-Shafer Theory Setting: An Improved Evidence Distance-Based Approach.

机构信息

ASL, Aeronautics and Spatial Studies Institute, Blida 1 University, Blida 09000, Algeria.

LIAS, National Engineering School for Mechanics and Aerotechnics, 86961 Futuroscope Chasseneuil, France.

出版信息

Sensors (Basel). 2023 May 28;23(11):5141. doi: 10.3390/s23115141.

Abstract

In IoT environments, voluminous amounts of data are produced every single second. Due to multiple factors, these data are prone to various imperfections, they could be uncertain, conflicting, or even incorrect leading to wrong decisions. Multisensor data fusion has proved to be powerful for managing data coming from heterogeneous sources and moving towards effective decision-making. Dempster-Shafer (D-S) theory is a robust and flexible mathematical tool for modeling and merging uncertain, imprecise, and incomplete data, and is widely used in multisensor data fusion applications such as decision-making, fault diagnosis, pattern recognition, etc. However, the combination of contradictory data has always been challenging in D-S theory, unreasonable results may arise when dealing with highly conflicting sources. In this paper, an improved evidence combination approach is proposed to represent and manage both conflict and uncertainty in IoT environments in order to improve decision-making accuracy. It mainly relies on an improved evidence distance based on Hellinger distance and Deng entropy. To demonstrate the effectiveness of the proposed method, a benchmark example for target recognition and two real application cases in fault diagnosis and IoT decision-making have been provided. Fusion results were compared with several similar methods, and simulation analyses have shown the superiority of the proposed method in terms of conflict management, convergence speed, fusion results reliability, and decision accuracy. In fact, our approach achieved remarkable accuracy rates of 99.32% in target recognition example, 96.14% in fault diagnosis problem, and 99.54% in IoT decision-making application.

摘要

在物联网环境中,每秒钟都会产生大量的数据。由于多种因素的影响,这些数据容易存在各种不完美之处,例如不确定性、冲突性,甚至是错误的,从而导致错误的决策。多传感器数据融合已被证明是管理来自异构源的数据并推动有效决策的强大工具。Dempster-Shafer(D-S)理论是一种强大而灵活的数学工具,用于对不确定、不精确和不完整的数据进行建模和融合,广泛应用于多传感器数据融合应用,如决策、故障诊断、模式识别等。然而,在 D-S 理论中,对矛盾数据的组合一直是具有挑战性的,在处理高度冲突的数据源时可能会产生不合理的结果。本文提出了一种改进的证据组合方法,以表示和管理物联网环境中的冲突和不确定性,从而提高决策的准确性。它主要依赖于一种基于 Hellinger 距离和 Deng 熵的改进证据距离。为了证明所提出方法的有效性,提供了一个用于目标识别的基准示例以及两个用于故障诊断和物联网决策的实际应用案例。将融合结果与几种类似的方法进行了比较,模拟分析表明了所提出方法在冲突管理、收敛速度、融合结果可靠性和决策准确性方面的优越性。实际上,我们的方法在目标识别示例中实现了 99.32%的显著准确率,在故障诊断问题中达到了 96.14%,在物联网决策应用中达到了 99.54%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/996e/10255415/80dfd03bfef2/sensors-23-05141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验