School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Innovation Academy for Microsatellites of CAS, Shanghai 201304, China.
Sensors (Basel). 2023 May 29;23(11):5180. doi: 10.3390/s23115180.
Fast convergence routing is a critical issue for Low Earth Orbit (LEO) constellation networks because these networks have dynamic topology changes, and transmission requirements can vary over time. However, most of the previous research has focused on the Open Shortest Path First (OSPF) routing algorithm, which is not well-suited to handle the frequent changes in the link state of the LEO satellite network. In this regard, we propose a Fast-Convergence Reinforcement Learning Satellite Routing Algorithm (FRL-SR) for LEO satellite networks, where the satellite can quickly obtain the network link status and adjust its routing strategy accordingly. In FRL-SR, each satellite node is considered an agent, and the agent selects the appropriate port for packet forwarding based on its routing policy. Whenever the satellite network state changes, the agent sends "hello" packets to the neighboring nodes to update their routing policy. Compared to traditional reinforcement learning algorithms, FRL-SR can perceive network information faster and converge faster. Additionally, FRL-SR can mask the dynamics of the satellite network topology and adaptively adjust the forwarding strategy based on the link state. The experimental results demonstrate that the proposed FRL-SR algorithm outperforms the Dijkstra algorithm in the performance of average delay, packet arriving ratio, and network load balance.
快速收敛路由是低地球轨道 (LEO) 星座网络的一个关键问题,因为这些网络具有动态拓扑变化,并且传输要求随时间而变化。然而,以前的大多数研究都集中在开放式最短路径优先 (OSPF) 路由算法上,该算法不太适合处理 LEO 卫星网络链路状态的频繁变化。在这方面,我们为 LEO 卫星网络提出了一种快速收敛强化学习卫星路由算法 (FRL-SR),其中卫星可以快速获取网络链路状态并相应地调整其路由策略。在 FRL-SR 中,每个卫星节点都被视为一个代理,代理根据其路由策略选择适当的端口进行数据包转发。每当卫星网络状态发生变化时,代理会向相邻节点发送“hello”数据包以更新其路由策略。与传统强化学习算法相比,FRL-SR 可以更快地感知网络信息并更快地收敛。此外,FRL-SR 可以掩盖卫星网络拓扑的动态,并根据链路状态自适应地调整转发策略。实验结果表明,所提出的 FRL-SR 算法在平均延迟、数据包到达率和网络负载平衡方面的性能优于 Dijkstra 算法。