Suppr超能文献

利用深度学习方法自动检测散养环境下的棕色蛋鸡。

Automatic detection of brown hens in cage-free houses with deep learning methods.

机构信息

School of Internet, Anhui University, Hefei, Anhui 230039, China; Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.

Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.

出版信息

Poult Sci. 2023 Aug;102(8):102784. doi: 10.1016/j.psj.2023.102784. Epub 2023 May 18.

Abstract

Computer vision technologies have been tested to monitor animals' behaviors and performance. High stocking density and small body size of chickens such as broiler and cage-free layers make effective automated monitoring quite challenging. Therefore, it is critical to improve the accuracy and robustness of laying hens clustering detection. In this study, we established a laying hens detection model YOLOv5-C3CBAM-BiFPN, and tested its performance in detecting birds on open litter. The model consists of 3 parts: 1) the basic YOLOv5 model for feature extraction and target detection of laying hens; 2) the convolution block attention module integrated with C3 module (C3CBAM) to improve the detection effect of targets and occluded targets; and 3) bidirectional feature pyramid network (BiFPN), which is used to enhance the transmission of feature information between different network layers and improve the accuracy of the algorithm. In order to better evaluate the effectiveness of the new model, a total of 720 images containing different numbers of laying hens were selected to construct complex datasets with different occlusion degrees and densities. In addition, this paper also compared the proposed model with a YOLOv5 model that combined other attention mechanisms. The test results show that the improved model YOLOv5-C3CBAM-BiFPN achieved a precision of 98.2%, a recall of 92.9%, a mAP (IoU = 0.5) of 96.7%, a classification rate 156.3 f/s (frames per second), and a F1 (F1 score) of 95.4%. In other words, the laying hen detection method based on deep learning proposed in the present study has excellent performance, can identify the target accurately and quickly, and can be applied to real-time detection of laying hens in real-world production environment.

摘要

计算机视觉技术已被用于监测动物的行为和表现。肉鸡和笼养蛋鸡等小鸡的高密度饲养和小体型使得有效的自动化监测极具挑战性。因此,提高蛋鸡聚类检测的准确性和鲁棒性至关重要。本研究建立了一个蛋鸡检测模型 YOLOv5-C3CBAM-BiFPN,并在开放式鸡舍中检测鸟类的性能进行了测试。该模型由 3 部分组成:1)基础的 YOLOv5 模型,用于提取和检测蛋鸡的特征和目标;2)集成 C3 模块的卷积块注意力模块(C3CBAM),以提高目标和遮挡目标的检测效果;3)双向特征金字塔网络(BiFPN),用于增强不同网络层之间的特征信息传递,提高算法的准确性。为了更好地评估新模型的有效性,我们共选择了包含不同数量蛋鸡的 720 张图像,构建了具有不同遮挡度和密度的复杂数据集。此外,本文还将所提出的模型与结合了其他注意力机制的 YOLOv5 模型进行了比较。实验结果表明,改进后的模型 YOLOv5-C3CBAM-BiFPN 实现了 98.2%的精度、92.9%的召回率、96.7%的 mAP(IOU=0.5)、156.3 f/s(每秒帧数)的分类率和 95.4%的 F1 值。也就是说,本研究提出的基于深度学习的蛋鸡检测方法性能优异,能够准确快速地识别目标,可应用于实际生产环境中蛋鸡的实时检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da28/10276268/bb4b25f249e2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验