Suppr超能文献

使用计算机视觉系统对长时间视频中不同光色和温度环境下蛋鸡的偏好行为进行评估。

Assessment of Preference Behavior of Layer Hens under Different Light Colors and Temperature Environments in Long-Time Footage Using a Computer Vision System.

作者信息

Kodaira Vanessa, Siriani Allan Lincoln Rodrigues, Medeiros Henry Ponti, De Moura Daniella Jorge, Pereira Danilo Florentino

机构信息

Graduate Program in Agricultural Engineering, Faculty of Agricultural Engineering, Campinas State University, Campinas 13083-875, SP, Brazil.

Graduate Program in Agribusiness and Development, School of Science and Engineering, São Paulo State University, Tupã 17602-496, SP, Brazil.

出版信息

Animals (Basel). 2023 Jul 27;13(15):2426. doi: 10.3390/ani13152426.

Abstract

As for all birds, the behavior of chickens is largely determined by environmental conditions. In many production systems, light intensity is low and red feather strains have low contrast with the background, making it impossible to use conventional image segmentation techniques. On the other hand, studies of chicken behavior, even when using video camera resources, depend on human vision to extract the information of interest; and in this case, reduced samples are observed, due to the high cost of time and energy. Our work combined the use of advanced object detection techniques using YOLO v4 architecture to locate chickens in low-quality videos, and we automatically extracted information on the location of birds in more than 648 h of footage. We develop an automated system that allows the chickens to transition among three environments with different illuminations equipped with video cameras to monitor the presence of birds in each compartment, and we automatically count the number of birds in each compartment and determine their preference. Our chicken detection algorithm shows a mean average precision of 99.9%, and a manual inspection of the results showed an accuracy of 98.8%. Behavioral analysis results based on bird unrest index and permanence time indicate that chickens tend to prefer white light and disfavor green light, except in the presence of heat stress when no clear preference can be observed. This study demonstrates the potential of using computer vision techniques with low-resolution, low-cost cameras to monitor chickens in low-light conditions.

摘要

对于所有鸟类来说,鸡的行为在很大程度上由环境条件决定。在许多生产系统中,光照强度较低,红色羽毛品系与背景的对比度较低,这使得无法使用传统的图像分割技术。另一方面,对鸡行为的研究,即使使用摄像机资源,也依赖于人类视觉来提取感兴趣的信息;在这种情况下,由于时间和精力成本高昂,观察到的样本数量减少。我们的工作结合使用了基于YOLO v4架构的先进目标检测技术,以在低质量视频中定位鸡,并且我们自动从超过648小时的视频片段中提取了有关鸡位置的信息。我们开发了一个自动化系统,该系统允许鸡在配备摄像机的三种不同光照环境之间转换,以监测每个隔层中鸡的存在情况,并且我们自动统计每个隔层中鸡的数量并确定它们的偏好。我们的鸡检测算法平均精度达到99.9%,对结果的人工检查显示准确率为98.8%。基于鸡的不安指数和停留时间的行为分析结果表明,鸡倾向于喜欢白光而不喜欢绿光,除非在热应激情况下,此时观察不到明显的偏好。这项研究证明了使用低分辨率、低成本摄像机的计算机视觉技术在低光照条件下监测鸡的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1372/10417600/cb066be4d381/animals-13-02426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验