Department of Geography and Environmental Studies, UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA.
Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
Environ Monit Assess. 2023 Jun 12;195(7):834. doi: 10.1007/s10661-023-11283-w.
Meteorological (MET) data is a crucial input for environmental exposure models. While modeling exposure potential using geospatial technology is a common practice, existing studies infrequently evaluate the impact of input MET data on the level of uncertainty on output results. The objective of this study is to determine the effect of various MET data sources on the potential exposure susceptibility predictions. Three sources of wind data are compared: The North American Regional Reanalysis (NARR) database, meteorological aerodrome reports (METARs) from regional airports, and data from local MET weather stations. These data sources are used as inputs into a machine learning (ML) driven GIS Multi-Criteria Decision Analysis (GIS-MCDA) geospatial model to predict potential exposure to abandoned uranium mine sites in the Navajo Nation. Results indicate significant variations in results derived from different wind data sources. After validating the results from each source using the National Uranium Resource Evaluation (NURE) database in a geographically weighted regression (GWR), METARs data combined with the local MET weather station data showed the highest accuracy, with an average R of 0.74. We conclude that local direct measurement-based data (METARs and MET data) produce a more accurate prediction than the other sources evaluated in the study. This study has the potential to inform future data collection methods, leading to more accurate predictions and better-informed policy decisions surrounding environmental exposure susceptibility and risk assessment.
气象(MET)数据是环境暴露模型的关键输入。虽然使用地理空间技术来模拟暴露潜力是一种常见做法,但现有研究很少评估输入 MET 数据对输出结果不确定性水平的影响。本研究的目的是确定各种 MET 数据源对潜在暴露易感性预测的影响。比较了三种风数据来源:北美区域再分析(NARR)数据库、来自区域机场的气象机场报告(METAR)和当地 MET 气象站的数据。这些数据源被用作机器学习(ML)驱动的 GIS 多标准决策分析(GIS-MCDA)地理空间模型的输入,以预测纳瓦霍族废弃铀矿场的潜在暴露。结果表明,不同风数据来源的结果存在显著差异。在使用地理加权回归(GWR)中的国家铀资源评估(NURE)数据库对每个来源的结果进行验证后,METAR 数据与当地 MET 气象站数据相结合显示出最高的准确性,平均 R 值为 0.74。我们得出结论,本地直接测量数据(METAR 和 MET 数据)比研究中评估的其他来源产生更准确的预测。本研究有可能为未来的数据收集方法提供信息,从而实现更准确的预测和更好的环境暴露易感性和风险评估决策。