Suppr超能文献

利用时空土地利用随机森林模型估算 2013-2015 年意大利的日 PM 和 PM 浓度。

Estimation of daily PM and PM concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model.

机构信息

Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147 Rome, Italy; Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden.

Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden.

出版信息

Environ Int. 2019 Mar;124:170-179. doi: 10.1016/j.envint.2019.01.016. Epub 2019 Jan 14.

Abstract

Particulate matter (PM) air pollution is one of the major causes of death worldwide, with demonstrated adverse effects from both short-term and long-term exposure. Most of the epidemiological studies have been conducted in cities because of the lack of reliable spatiotemporal estimates of particles exposure in nonurban settings. The objective of this study is to estimate daily PM (PM < 10 μm), fine (PM < 2.5 μm, PM) and coarse particles (PM between 2.5 and 10 μm, PM) at 1-km grid for 2013-2015 using a machine learning approach, the Random Forest (RF). Separate RF models were defined to: predict PM and PM concentrations in monitors where only PM data were available (stage 1); impute missing satellite Aerosol Optical Depth (AOD) data using estimates from atmospheric ensemble models (stage 2); establish a relationship between measured PM and satellite, land use and meteorological parameters (stage 3); predict stage 3 model over each 1-km grid cell of Italy (stage 4); and improve stage 3 predictions by using small-scale predictors computed at the monitor locations or within a small buffer (stage 5). Our models were able to capture most of PM variability, with mean cross-validation (CV) R of 0.75 and 0.80 (stage 3) and 0.84 and 0.86 (stage 5) for PM and PM, respectively. Model fitting was less optimal for PM, in summer months and in southern Italy. Finally, predictions were equally good in capturing annual and daily PM variability, therefore they can be used as reliable exposure estimates for investigating long-term and short-term health effects.

摘要

颗粒物 (PM) 空气污染是全球主要死因之一,短期和长期暴露均产生不良影响。由于缺乏非城市环境中颗粒暴露的可靠时空估计,大多数流行病学研究都是在城市进行的。本研究的目的是使用机器学习方法——随机森林 (RF) 来估算 2013-2015 年每日 PM(PM<10μm)、细颗粒物(PM<2.5μm,PM)和粗颗粒物(PM 在 2.5 和 10μm 之间,PM)在 1km 网格上的浓度。分别定义了单独的 RF 模型来:预测只有 PM 数据的监测站中的 PM 和 PM 浓度(阶段 1);使用大气集合模型的估计值来插补缺失的卫星气溶胶光学深度 (AOD) 数据(阶段 2);建立测量的 PM 与卫星、土地利用和气象参数之间的关系(阶段 3);在意大利的每个 1km 网格单元上预测阶段 3 模型(阶段 4);并通过使用在监测站位置或小缓冲区内部计算的小尺度预测器来改进阶段 3 预测(阶段 5)。我们的模型能够捕获大部分 PM 变化,PM 的平均交叉验证 (CV) R 分别为 0.75 和 0.80(阶段 3)和 0.84 和 0.86(阶段 5),PM 分别为 0.75 和 0.80(阶段 3)和 0.84 和 0.86(阶段 5)。PM 的模型拟合效果较差,夏季和意大利南部的情况更是如此。最后,预测结果同样可以很好地捕捉年际和日际 PM 变化,因此它们可作为可靠的暴露估计值,用于研究长期和短期健康影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验