抗菌药物耐药性与机器学习:过去、现在与未来。

Antimicrobial resistance and machine learning: past, present, and future.

作者信息

Farhat Faiza, Athar Md Tanwir, Ahmad Sultan, Madsen Dag Øivind, Sohail Shahab Saquib

机构信息

Department of Zoology, Aligarh Muslim University, Aligarh, India.

Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Al-Qassim, Saudi Arabia.

出版信息

Front Microbiol. 2023 May 26;14:1179312. doi: 10.3389/fmicb.2023.1179312. eCollection 2023.

Abstract

Machine learning has become ubiquitous across all industries, including the relatively new application of predicting antimicrobial resistance. As the first bibliometric review in this field, we expect it to inspire further research in this area. The review employs standard bibliometric indicators such as article count, citation count, and the Hirsch index (H-index) to evaluate the relevance and impact of the leading countries, organizations, journals, and authors in this field. VOSviewer and Biblioshiny programs are utilized to analyze citation and co-citation networks, collaboration networks, keyword co-occurrence, and trend analysis. The United States has the highest contribution with 254 articles, accounting for over 37.57% of the total corpus, followed by China (103) and the United Kingdom (78). Among 58 publishers, the top four publishers account for 45% of the publications, with Elsevier leading with 15% of the publications, followed by Springer Nature (12%), MDPI, and Frontiers Media SA with 9% each. Frontiers in Microbiology is the most frequent publication source (33 articles), followed by Scientific Reports (29 articles), PLoS One (17 articles), and Antibiotics (16 articles). The study reveals a substantial increase in research and publications on the use of machine learning to predict antibiotic resistance. Recent research has focused on developing advanced machine learning algorithms that can accurately forecast antibiotic resistance, and a range of algorithms are now being used to address this issue.

摘要

机器学习在所有行业中都已变得无处不在,包括预测抗菌药物耐药性这一相对较新的应用领域。作为该领域的首次文献计量学综述,我们期望它能激发该领域的进一步研究。该综述采用文章数量、被引次数和赫希指数(H指数)等标准文献计量指标,来评估该领域主要国家、组织、期刊和作者的相关性和影响力。利用VOSviewer和Biblioshiny程序分析引文和共被引网络、合作网络、关键词共现以及趋势分析。美国贡献最大,有254篇文章,占全部文献总量的37.57%以上,其次是中国(103篇)和英国(78篇)。在58家出版商中,前四家出版商占出版物总数的45%,其中爱思唯尔以15%的出版物数量领先,其次是施普林格·自然(12%)、MDPI和前沿媒体集团(均为9%)。《微生物学前沿》是最常见的出版来源(33篇文章),其次是《科学报告》(29篇文章)、《公共科学图书馆·综合》(17篇文章)和《抗生素》(16篇文章)。该研究表明,利用机器学习预测抗生素耐药性的研究和出版物大幅增加。近期的研究集中在开发能够准确预测抗生素耐药性的先进机器学习算法,目前正在使用一系列算法来解决这一问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcc1/10250749/98dca58f6b0d/fmicb-14-1179312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索