Suresh Neena, Thomas Binu, Joseph Jeena
Department of Computer Sciences, Mahatma Gandhi University, Kottayam, Kottayam, IND.
Department of Computer Applications, Marian College Kuttikkanam (Autonomous), Kuttikkanam, IND.
Cureus. 2024 Jun 27;16(6):e63337. doi: 10.7759/cureus.63337. eCollection 2024 Jun.
With the advancement in artificial intelligence, the use of machine learning algorithms for clinical prediction has increased tremendously. Logistic regression is one of the powerful machine learning algorithms that can be used to predict the probability of a variable. Logistic regression is very popular among medical researchers owing to its simplicity, interpretability, and solid statistical foundation. This study aims to investigate the research productivity of heart disease classification using a logistic regression model to analyze the current patterns and potential future trends through bibliometric analysis. Additionally, it aims to highlight the impact and quality of research in the area, identify prominent research groups, the countries actively contributing to the field, which will help the researchers and healthcare professionals to pinpoint research gaps, influential authors, and make informed decisions and invest resources accordingly. The data is collected from a database of Scopus spanning from 2019 to 2023. We have used two bibliometric software, Biblioshiny (Aria and Cuccurullo, 2017) and VOSviewer (Centre for Science and Technology Studies (CWTS), Leiden University, the Netherlands), to analyze the bibliographic data regarding the citation count, contribution of authors, publication count, the contribution of institutions, etc. There are 2331 documents under study which were fed into both software to analyze the data. With 700 documents, China topped the list of most productive countries indicating the vast contribution of the country followed by India and the United States. Contributions of the Harvard Medical School, Boston, MA, United States are found to be the greatest with six papers. The most productive author is Wang Y with 73 documents. Analysis of trending topics reveals that the field progressing towards using support vector machines (SVM), k-nearest neighbours (KNN), and naïve Bayes algorithms. The article has only considered data from Scopus excluding literature indexed in other databases which limits the potential coverage of the data. Also, the work focuses on recent developments excluding older literature from 2019 which could be a limitation. Furthermore, since the study is a bibliometric analysis targeting the use of logistic regression for heart disease prediction, powerful techniques such as SVM, decision trees, random forests, neural networks and deep learning have not been included, which could be another limitation.
随着人工智能的发展,用于临床预测的机器学习算法的使用急剧增加。逻辑回归是一种强大的机器学习算法,可用于预测变量的概率。由于其简单性、可解释性和坚实的统计基础,逻辑回归在医学研究人员中非常受欢迎。本研究旨在通过文献计量分析,利用逻辑回归模型研究心脏病分类的研究生产力,以分析当前模式和未来潜在趋势。此外,它旨在突出该领域研究的影响和质量,识别突出的研究群体、积极为该领域做出贡献的国家,这将有助于研究人员和医疗保健专业人员找出研究差距、有影响力的作者,并据此做出明智的决策和投入资源。数据是从2019年至2023年的Scopus数据库中收集的。我们使用了两种文献计量软件,Biblioshiny(Aria和Cuccurullo,2017年)和VOSviewer(荷兰莱顿大学科学技术研究中心(CWTS)),来分析关于引用次数、作者贡献、发表数量、机构贡献等的文献数据。有2331份研究文献被输入到这两种软件中进行数据分析。中国以700篇文献位居最具生产力国家榜首,表明该国贡献巨大,其次是印度和美国。美国马萨诸塞州波士顿的哈佛医学院贡献最大,有六篇论文。最具生产力的作者是王Y,有73篇文献。对热门话题的分析表明,该领域正朝着使用支持向量机(SVM)、k近邻(KNN)和朴素贝叶斯算法发展。本文仅考虑了来自Scopus的数据,不包括其他数据库中索引的文献,这限制了数据的潜在覆盖范围。此外,这项工作侧重于近期发展,排除了2019年以前的旧文献,这可能是一个限制。此外,由于该研究是一项针对使用逻辑回归进行心脏病预测的文献计量分析,未包括支持向量机、决策树、随机森林、神经网络和深度学习等强大技术,这可能是另一个限制。
Front Cardiovasc Med. 2023-5-25
Front Biosci (Landmark Ed). 2022-8-31
J Diabetes Sci Technol. 2024-3
Comput Methods Programs Biomed. 2023-4
Int J Environ Res Public Health. 2022-12-22
Cochrane Database Syst Rev. 2022-2-1
Mayo Clin Proc Innov Qual Outcomes. 2024-1-20
Sci Rep. 2020-9-29
Basic Clin Pharmacol Toxicol. 2005-11
Am Heart J. 1958-2