文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于逻辑回归模型的心脏病分类科学文献计量分析与可视化

Bibliometric Analysis and Visualization of Scientific Literature on Heart Disease Classification Using a Logistic Regression Model.

作者信息

Suresh Neena, Thomas Binu, Joseph Jeena

机构信息

Department of Computer Sciences, Mahatma Gandhi University, Kottayam, Kottayam, IND.

Department of Computer Applications, Marian College Kuttikkanam (Autonomous), Kuttikkanam, IND.

出版信息

Cureus. 2024 Jun 27;16(6):e63337. doi: 10.7759/cureus.63337. eCollection 2024 Jun.


DOI:10.7759/cureus.63337
PMID:39070375
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11283593/
Abstract

With the advancement in artificial intelligence, the use of machine learning algorithms for clinical prediction has increased tremendously. Logistic regression is one of the powerful machine learning algorithms that can be used to predict the probability of a variable. Logistic regression is very popular among medical researchers owing to its simplicity, interpretability, and solid statistical foundation. This study aims to investigate the research productivity of heart disease classification using a logistic regression model to analyze the current patterns and potential future trends through bibliometric analysis. Additionally, it aims to highlight the impact and quality of research in the area, identify prominent research groups, the countries actively contributing to the field, which will help the researchers and healthcare professionals to pinpoint research gaps, influential authors, and make informed decisions and invest resources accordingly. The data is collected from a database of Scopus spanning from 2019 to 2023. We have used two bibliometric software, Biblioshiny (Aria and Cuccurullo, 2017) and VOSviewer (Centre for Science and Technology Studies (CWTS), Leiden University, the Netherlands), to analyze the bibliographic data regarding the citation count, contribution of authors, publication count, the contribution of institutions, etc. There are 2331 documents under study which were fed into both software to analyze the data. With 700 documents, China topped the list of most productive countries indicating the vast contribution of the country followed by India and the United States. Contributions of the Harvard Medical School, Boston, MA, United States are found to be the greatest with six papers. The most productive author is Wang Y with 73 documents. Analysis of trending topics reveals that the field progressing towards using support vector machines (SVM), k-nearest neighbours (KNN), and naïve Bayes algorithms. The article has only considered data from Scopus excluding literature indexed in other databases which limits the potential coverage of the data. Also, the work focuses on recent developments excluding older literature from 2019 which could be a limitation. Furthermore, since the study is a bibliometric analysis targeting the use of logistic regression for heart disease prediction, powerful techniques such as SVM, decision trees, random forests, neural networks and deep learning have not been included, which could be another limitation.

摘要

随着人工智能的发展,用于临床预测的机器学习算法的使用急剧增加。逻辑回归是一种强大的机器学习算法,可用于预测变量的概率。由于其简单性、可解释性和坚实的统计基础,逻辑回归在医学研究人员中非常受欢迎。本研究旨在通过文献计量分析,利用逻辑回归模型研究心脏病分类的研究生产力,以分析当前模式和未来潜在趋势。此外,它旨在突出该领域研究的影响和质量,识别突出的研究群体、积极为该领域做出贡献的国家,这将有助于研究人员和医疗保健专业人员找出研究差距、有影响力的作者,并据此做出明智的决策和投入资源。数据是从2019年至2023年的Scopus数据库中收集的。我们使用了两种文献计量软件,Biblioshiny(Aria和Cuccurullo,2017年)和VOSviewer(荷兰莱顿大学科学技术研究中心(CWTS)),来分析关于引用次数、作者贡献、发表数量、机构贡献等的文献数据。有2331份研究文献被输入到这两种软件中进行数据分析。中国以700篇文献位居最具生产力国家榜首,表明该国贡献巨大,其次是印度和美国。美国马萨诸塞州波士顿的哈佛医学院贡献最大,有六篇论文。最具生产力的作者是王Y,有73篇文献。对热门话题的分析表明,该领域正朝着使用支持向量机(SVM)、k近邻(KNN)和朴素贝叶斯算法发展。本文仅考虑了来自Scopus的数据,不包括其他数据库中索引的文献,这限制了数据的潜在覆盖范围。此外,这项工作侧重于近期发展,排除了2019年以前的旧文献,这可能是一个限制。此外,由于该研究是一项针对使用逻辑回归进行心脏病预测的文献计量分析,未包括支持向量机、决策树、随机森林、神经网络和深度学习等强大技术,这可能是另一个限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/f7344b0cea3e/cureus-0016-00000063337-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/f06e368e8a0a/cureus-0016-00000063337-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/c8dd23a43725/cureus-0016-00000063337-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/c9557b3a0b21/cureus-0016-00000063337-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/47bd1675996a/cureus-0016-00000063337-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/6dedb5a2f130/cureus-0016-00000063337-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/d7adee1f6ba6/cureus-0016-00000063337-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/3d92ed2215a5/cureus-0016-00000063337-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/d7e00135497f/cureus-0016-00000063337-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/35f48babb77a/cureus-0016-00000063337-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/2e8bf88cb024/cureus-0016-00000063337-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/62ea6ac8b057/cureus-0016-00000063337-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/7ed65398b898/cureus-0016-00000063337-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/f7344b0cea3e/cureus-0016-00000063337-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/f06e368e8a0a/cureus-0016-00000063337-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/c8dd23a43725/cureus-0016-00000063337-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/c9557b3a0b21/cureus-0016-00000063337-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/47bd1675996a/cureus-0016-00000063337-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/6dedb5a2f130/cureus-0016-00000063337-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/d7adee1f6ba6/cureus-0016-00000063337-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/3d92ed2215a5/cureus-0016-00000063337-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/d7e00135497f/cureus-0016-00000063337-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/35f48babb77a/cureus-0016-00000063337-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/2e8bf88cb024/cureus-0016-00000063337-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/62ea6ac8b057/cureus-0016-00000063337-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/7ed65398b898/cureus-0016-00000063337-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517d/11283593/f7344b0cea3e/cureus-0016-00000063337-i13.jpg

相似文献

[1]
Bibliometric Analysis and Visualization of Scientific Literature on Heart Disease Classification Using a Logistic Regression Model.

Cureus. 2024-6-27

[2]
Bibliometric analysis of 100 top cited articles of heart failure-associated diseases in combination with machine learning.

Front Cardiovasc Med. 2023-5-25

[3]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[4]
Global research trends of infantile hemangioma: A bibliometric and visualization analysis from 2000 to 2022.

Heliyon. 2023-10-21

[5]
Machine Learning and Deep Learning Techniques Applied to Diabetes Research: A Bibliometric Analysis.

J Diabetes Sci Technol. 2024-3

[6]
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.

Comput Methods Programs Biomed. 2023-4

[7]
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review.

Int J Environ Res Public Health. 2022-12-22

[8]
Research trends in the field of the gut-brain interaction: Functional dyspepsia in the spotlight - An integrated bibliometric and science mapping approach.

Front Neurosci. 2023-3-8

[9]
Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.

J Nurs Scholarsh. 2023-7

[10]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

引用本文的文献

[1]
Tracking Research Momentum and Scholarly Impact: A Bibliometric Analysis of Magnetotherapy.

Cureus. 2024-9-12

本文引用的文献

[1]
The Burden of Chronic Disease.

Mayo Clin Proc Innov Qual Outcomes. 2024-1-20

[2]
Bibliometric, network, and thematic mapping analyses of metaphor and discourse in COVID-19 publications from 2020 to 2022.

Front Psychol. 2023-1-16

[3]
Overview of Sankey flow diagrams: Focusing on symptom trajectories in older adults with advanced cancer.

J Geriatr Oncol. 2022-6

[4]
Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action.

Vasc Health Risk Manag. 2021

[5]
Machine learning prediction in cardiovascular diseases: a meta-analysis.

Sci Rep. 2020-9-29

[6]
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.

J Clin Epidemiol. 2019-2-11

[7]
Bibliometric methods: pitfalls and possibilities.

Basic Clin Pharmacol Toxicol. 2005-11

[8]
Experimental heart failure in rabbits with hypertension.

Am Heart J. 1958-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索