Goldfinger M D
Biophys J. 1986 Jul;50(1):27-40. doi: 10.1016/S0006-3495(86)83436-1.
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed.
单个神经元底物内多个输入的汇聚是外周和中枢神经系统共有的设计特征。通常,这种汇聚的结果作用于细胞内连续的轴突,在那里它被编码为一系列动作电位。多个输入汇聚结果的最简单表示是泊松过程;轴突兴奋性的一般表示是霍奇金 - 赫胥黎/电缆理论形式。本研究通过将泊松过程刺激应用于霍奇金 - 赫胥黎轴突电缆来探讨轴突上的多个输入汇聚。结果表明,绝对不应期和相对不应期在轴突输出中产生了一个随机但非泊松过程。较小幅度的刺激引发了一种短间隔条件作用,而较大幅度的刺激引发了接近泊松标准的冲动序列,但存在不应期的影响。这些结果是针对由恒定幅度和恒定或可变持续时间的脉冲组成的刺激序列获得的。相比之下,无论刺激脉冲形状是否可变,稳态下冲动起始的冲动后条件概率都是一个类似泊松的过程。对于由随机较小幅度或随机较长持续时间组成的刺激变异性,平均冲动频率分别降低或增强。讨论了这些计算的局限性和意义。