Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Institute of Biological Information Processing - Structural Biochemistry (IBI-7), Research Centre Jülich, Jülich, Germany.
Phys Chem Chem Phys. 2023 Jun 21;25(24):16483-16491. doi: 10.1039/d2cp05961d.
The aggregation of the amyloid β (Aβ) peptide is a major hallmark of Alzheimer's disease. This peptide can aggregate into oligomers, proto-fibrils and mature fibrils, which eventually assemble into amyloid plaques . Several post-translational modifications lead to the presence of different forms of the Aβ peptide in the amyloid plaques with different biophysical and biochemical properties. While the canonical forms Aβ(1-40) and Aβ(1-42) have been found to be the major components of amyloid plaques, N-terminally pyroglutamate-modified variants, specifically pE-Aβ(3-42), amount to a significant fraction of the total Aβ plaque content of AD brains. With increased hydrophobicity, these variants display a more pronounced aggregation behaviour which, together with their higher stability against degradation is thought to make them crucial molecular players in the aetiology of AD. The peptide monomers are the smallest assembly units, and play an important role in most of the individual molecular processes involved in amyloid fibril formation, such as primary and secondary nucleation and elongation. Understanding the monomeric conformational ensembles of the isoforms is important in unraveling observed differences in their bio-physico-chemical properties. Here we use enhanced and extensive molecular dynamics simulations to study the structural flexibility of the N-terminally truncated Pyroglutamate modified isomer of Aβ, pE-Aβ(3-42) monomer, and compared it with simulations of the Aβ(1-42) peptide monomer under the same conditions. We find significant differences, especially in the secondary structure and hydrophobic exposure, which might be responsible for their different behaviour in biophysical experiments.
β淀粉样蛋白(Aβ)肽的聚集是阿尔茨海默病的主要标志之一。该肽可以聚集形成寡聚体、原纤维和成熟纤维,最终组装成淀粉样斑块。几种翻译后修饰导致淀粉样斑块中存在具有不同生物物理和生化特性的不同形式的 Aβ肽。虽然已发现经典形式的 Aβ(1-40)和 Aβ(1-42)是淀粉样斑块的主要成分,但 N 端焦谷氨酸修饰的变体,特别是 pE-Aβ(3-42),占 AD 大脑中总 Aβ斑块含量的相当大一部分。这些变体的疏水性增加,表现出更明显的聚集行为,加上它们对降解的更高稳定性,被认为是 AD 发病机制中的关键分子参与者。肽单体是最小的组装单元,在涉及淀粉样纤维形成的大多数单个分子过程中发挥重要作用,例如一级和二级成核和延伸。了解异构体的单体构象集合对于揭示其生物物理化学性质的差异非常重要。在这里,我们使用增强和广泛的分子动力学模拟来研究 N 端截断的焦谷氨酸修饰异构体 Aβ,pE-Aβ(3-42)单体的结构灵活性,并将其与相同条件下的 Aβ(1-42)肽单体的模拟进行比较。我们发现了显著的差异,特别是在二级结构和疏水性暴露方面,这可能是它们在生物物理实验中表现出不同行为的原因。