文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

语言方法监测主要死因:针对公共卫生数据的 Twitter 范围审查。

Linguistic Methodologies to Surveil the Leading Causes of Mortality: Scoping Review of Twitter for Public Health Data.

机构信息

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

Technology and Translational Research Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States.

出版信息

J Med Internet Res. 2023 Jun 12;25:e39484. doi: 10.2196/39484.


DOI:10.2196/39484
PMID:37307062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10337472/
Abstract

BACKGROUND: Twitter has become a dominant source of public health data and a widely used method to investigate and understand public health-related issues internationally. By leveraging big data methodologies to mine Twitter for health-related data at the individual and community levels, scientists can use the data as a rapid and less expensive source for both epidemiological surveillance and studies on human behavior. However, limited reviews have focused on novel applications of language analyses that examine human health and behavior and the surveillance of several emerging diseases, chronic conditions, and risky behaviors. OBJECTIVE: The primary focus of this scoping review was to provide a comprehensive overview of relevant studies that have used Twitter as a data source in public health research to analyze users' tweets to identify and understand physical and mental health conditions and remotely monitor the leading causes of mortality related to emerging disease epidemics, chronic diseases, and risk behaviors. METHODS: A literature search strategy following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extended guidelines for scoping reviews was used to search specific keywords on Twitter and public health on 5 databases: Web of Science, PubMed, CINAHL, PsycINFO, and Google Scholar. We reviewed the literature comprising peer-reviewed empirical research articles that included original research published in English-language journals between 2008 and 2021. Key information on Twitter data being leveraged for analyzing user language to study physical and mental health and public health surveillance was extracted. RESULTS: A total of 38 articles that focused primarily on Twitter as a data source met the inclusion criteria for review. In total, two themes emerged from the literature: (1) language analysis to identify health threats and physical and mental health understandings about people and societies and (2) public health surveillance related to leading causes of mortality, primarily representing 3 categories (ie, respiratory infections, cardiovascular disease, and COVID-19). The findings suggest that Twitter language data can be mined to detect mental health conditions, disease surveillance, and death rates; identify heart-related content; show how health-related information is shared and discussed; and provide access to users' opinions and feelings. CONCLUSIONS: Twitter analysis shows promise in the field of public health communication and surveillance. It may be essential to use Twitter to supplement more conventional public health surveillance approaches. Twitter can potentially fortify researchers' ability to collect data in a timely way and improve the early identification of potential health threats. Twitter can also help identify subtle signals in language for understanding physical and mental health conditions.

摘要

背景:Twitter 已成为公共卫生数据的主要来源,也是国际上调查和了解与公共卫生相关问题的常用方法。通过利用大数据方法从个人和社区层面挖掘与健康相关的数据,科学家们可以将这些数据用作流行病学监测以及人类行为研究的快速且廉价的数据源。然而,很少有综述关注语言分析的新应用,这些应用可以检查人类健康和行为,并监测几种新出现的疾病、慢性病和危险行为。

目的:本范围综述的主要重点是提供一个全面的概述,介绍了使用 Twitter 作为公共卫生研究数据源的相关研究,这些研究分析用户的推文,以识别和了解身心健康状况,并远程监测与新出现的疾病流行、慢性病和危险行为相关的主要死亡原因。

方法:我们按照 PRISMA(系统评价和荟萃分析的首选报告项目)扩展的范围综述指南,使用特定的关键词在 5 个数据库(Web of Science、PubMed、CINAHL、PsycINFO 和 Google Scholar)上进行了文献搜索策略。我们回顾了包括 2008 年至 2021 年期间以英语发表的同行评议实证研究文章的文献。从文献中提取了关于利用 Twitter 数据分析用户语言以研究身心健康和公共卫生监测的关键信息。

结果:共有 38 篇主要关注 Twitter 作为数据源的文章符合综述的纳入标准。文献中总共出现了两个主题:(1)语言分析以识别健康威胁以及人与社会的身心健康理解;(2)与主要死亡原因相关的公共卫生监测,主要代表 3 个类别(即呼吸道感染、心血管疾病和 COVID-19)。研究结果表明,可以挖掘 Twitter 语言数据来检测心理健康状况、疾病监测和死亡率;识别与心脏相关的内容;展示健康相关信息是如何共享和讨论的;并让用户发表意见和感受。

结论:Twitter 分析在公共卫生传播和监测领域显示出了前景。使用 Twitter 来补充更传统的公共卫生监测方法可能至关重要。Twitter 有可能增强研究人员及时收集数据的能力,并提高对潜在健康威胁的早期识别能力。Twitter 还可以帮助识别语言中用于理解身心健康状况的微妙信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5eb/10337472/266096f0cf0a/jmir_v25i1e39484_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5eb/10337472/266096f0cf0a/jmir_v25i1e39484_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5eb/10337472/266096f0cf0a/jmir_v25i1e39484_fig1.jpg

相似文献

[1]
Linguistic Methodologies to Surveil the Leading Causes of Mortality: Scoping Review of Twitter for Public Health Data.

J Med Internet Res. 2023-6-12

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.

Med J Aust. 2020-12

[4]
Twitter as a Tool for Health Research: A Systematic Review.

Am J Public Health. 2017-1

[5]
Ethical and Methodological Considerations of Twitter Data for Public Health Research: Systematic Review.

J Med Internet Res. 2022-11-29

[6]
Using Twitter-Based Data for Sexual Violence Research: Scoping Review.

J Med Internet Res. 2023-5-15

[7]
Reporting of Ethical Considerations in Qualitative Research Utilizing Social Media Data on Public Health Care: Scoping Review.

J Med Internet Res. 2024-5-17

[8]
Social Media and Research Publication Activity During Early Stages of the COVID-19 Pandemic: Longitudinal Trend Analysis.

J Med Internet Res. 2021-6-17

[9]
Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review.

JMIR Public Health Surveill. 2020-11-30

[10]
Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.

J Med Internet Res. 2020-4-21

引用本文的文献

[1]
Exploring Social Media Posts on Lifestyle Behaviors: Sentiment and Content Analysis.

JMIR Infodemiology. 2025-6-25

[2]
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI.

Yearb Med Inform. 2024-8

[3]
Characterizing Public Sentiments and Drug Interactions in the COVID-19 Pandemic Using Social Media: Natural Language Processing and Network Analysis.

J Med Internet Res. 2025-3-5

[4]
Health promotion campaigns using social media: association rules mining and co-occurrence network analysis of Twitter hashtags.

BMC Public Health. 2025-1-7

[5]
Perception and barriers to access Pre-exposure Prophylaxis for HIV/AIDS (PrEP) among the MSM (men who have sex with men) Brazilian Amazon: A qualitative study.

PLoS One. 2024

[6]
Tweeting environmental pollution: Analyzing twitter language to uncover its correlation with county-level obesity rates in the United States.

Prev Med. 2024-9

本文引用的文献

[1]
A longitudinal and geospatial analysis of COVID-19 tweets during the early outbreak period in the United States.

BMC Public Health. 2021-4-24

[2]
Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study.

J Med Internet Res. 2020-8-28

[3]
A scoping review of the use of Twitter for public health research.

Comput Biol Med. 2020-7

[4]
Using Twitter to Surveil the Opioid Epidemic in North Carolina: An Exploratory Study.

JMIR Public Health Surveill. 2020-6-24

[5]
Estimating geographic subjective well-being from Twitter: A comparison of dictionary and data-driven language methods.

Proc Natl Acad Sci U S A. 2020-4-27

[6]
Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea.

J Med Internet Res. 2020-5-5

[7]
Cultural Differences in Tweeting about Drinking Across the US.

Int J Environ Res Public Health. 2020-2-11

[8]
Cannabis Surveillance With Twitter Data: Emerging Topics and Social Bots.

Am J Public Health. 2019-12-19

[9]
Predicting Depression From Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and Twitter Status Updates.

J Med Internet Res. 2018-5-8

[10]
Can Twitter be used to predict county excessive alcohol consumption rates?

PLoS One. 2018-4-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索