Schiller Lauren K, Abreu-Mendoza Roberto A, Rosenberg-Lee Miriam
Department of Psychology, Rutgers University.
J Exp Psychol Learn Mem Cogn. 2024 Mar;50(3):484-499. doi: 10.1037/xlm0001235. Epub 2023 Jun 12.
Decimal numbers are generally assumed to be a straightforward extension of the base-ten system for whole numbers given their shared place value structure. However, in decimal notation, unlike whole numbers, the same magnitude can be expressed in multiple ways (e.g., 0.8, 0.80, 0.800, etc.). Here, we used a number line task with carefully selected stimuli to investigate how equivalent decimals (e.g., 0.8 and 0.80 on a 0-1 number line) and proportionally equivalent whole numbers (e.g., 80 on a 0-100 number line) are estimated. We find that young adults ( = 88, = 20.22 years, = 1.65, 57 female) have a linear response pattern for both decimals and whole numbers, but those double-digit decimals (e.g., 0.08, 0.82, 0.80) are systematically underestimated relative to proportionally equivalent whole numbers (e.g., 8, 82, 80). Moreover, decimal string length worsens the underestimation, such that single-digit decimals (e.g., 0.8) are perceived as smaller than their equivalent double-digit decimals (e.g., 0.80). Finally, we find that exposing participants to whole number stimuli before decimal stimuli induces magnitude-based underestimation, that is, greater underestimation for larger decimals. Together, these results suggest a small but persistent underestimation bias for decimals less than one, and further that decimal magnitude estimation is fragile and subject to greater underestimation when exposed to whole numbers. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
鉴于十进制数与整数共享位值结构,通常认为它是整数十进制系统的直接扩展。然而,在十进制记数法中,与整数不同,同一个数值可以用多种方式表示(例如,0.8、0.80、0.800等)。在此,我们使用了一个带有精心挑选刺激物的数轴任务,来研究等效小数(例如,在0 - 1数轴上的0.8和0.80)以及成比例等效的整数(例如,在0 - 100数轴上的80)是如何被估计的。我们发现,年轻成年人(N = 88,M = 20.22岁,SD = 1.65,57名女性)对小数和整数都有线性反应模式,但那些两位数小数(例如,0.08、0.82、0.80)相对于成比例等效的整数(例如,8、82、80)会被系统性地低估。此外,小数的字符串长度会加剧这种低估,以至于一位小数(例如,0.8)被认为比其等效的两位数小数(例如,0.80)更小。最后,我们发现,在呈现小数刺激之前先让参与者接触整数刺激会引发基于数值大小的低估,也就是说,对较大的小数低估程度更大。总之,这些结果表明,对于小于1的小数存在一个虽小但持续的低估偏差,并且进一步表明,小数数值估计很脆弱,在接触整数时更容易被低估。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)