Suppr超能文献

抑制十进制数比较中的整数偏见:一项发展性负启动研究。

Inhibition of the whole number bias in decimal number comparison: A developmental negative priming study.

机构信息

Université Paris Descartes, Université Sorbonne Paris Cité, Laboratoire Psychologie du Développement et de l'Éducation de l'Enfant (LaPsyDÉ), UMR CNRS 8240, 75005 Paris, France; Université de Caen, 14032 Caen, France; Ecole des Neurosciences de Paris (ENP), 75006 Paris, France.

Université Paris Descartes, Université Sorbonne Paris Cité, Laboratoire Psychologie du Développement et de l'Éducation de l'Enfant (LaPsyDÉ), UMR CNRS 8240, 75005 Paris, France; Université de Caen, 14032 Caen, France.

出版信息

J Exp Child Psychol. 2019 Jan;177:240-247. doi: 10.1016/j.jecp.2018.08.010. Epub 2018 Sep 22.

Abstract

A major source of errors in decimal magnitude comparison tasks is the inappropriate application of whole number rules. Specifically, when comparing the magnitude of decimal numbers and the smallest number has the greatest number of digits after the decimal point (e.g., 0.9 vs. 0.476), using a property of whole numbers such as "the greater the number of digits, the greater its magnitude" may lead to erroneous answers. By using a negative priming paradigm, the current study aimed to determine whether the ability of seventh graders and adults to compare decimals where the smallest number has the greatest number of digits after the decimal point was partly rooted in the ability to inhibit the "the greater the number of digits, the greater its magnitude" misconception. We found that after participants needed to compare decimal numbers in which the smallest number has the greatest number of digits after the decimal point (e.g., 0.9 vs. 0.476), they were less efficient at comparing decimal numbers in which the largest number has the greatest number of digits after the decimal point (e.g., 0.826 vs. 0.3) than they were after comparing decimal numbers with the same number of digits after the decimal point (e.g., 0.981 vs. 0.444). The negative priming effects reported in seventh graders and adults suggest that inhibitory control is needed at all ages to avoid errors when comparing decimals where the smallest number has the greatest number of digits after the decimal point.

摘要

在十进制数量比较任务中,一个主要的错误来源是不恰当地应用整数规则。具体来说,当比较十进制数的大小,且最小数的小数点后位数最多(例如,0.9 与 0.476 相比)时,使用整数的属性,例如“位数越多,数值越大”,可能会导致错误的答案。本研究采用负启动范式,旨在确定七年级学生和成年人是否能够部分基于抑制“位数越多,数值越大”这一误解的能力,来比较最小数小数点后位数最多的十进制数。我们发现,在参与者需要比较最小数小数点后位数最多的十进制数(例如,0.9 与 0.476 相比)之后,他们在比较最大数小数点后位数最多的十进制数(例如,0.826 与 0.3 相比)时的效率低于比较小数点后位数相同的十进制数(例如,0.981 与 0.444 相比)。本研究在七年级学生和成年人中报告的负启动效应表明,在比较最小数小数点后位数最多的十进制数时,所有年龄段都需要抑制控制以避免错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验