School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30249-30261. doi: 10.1021/acsami.3c04549. Epub 2023 Jun 12.
Iron sulfides are widely explored as anodes of sodium-ion batteries (SIBs) owing to high theoretical capacities and low cost, but their practical application is still impeded by poor rate capability and fast capacity decay. Herein, for the first time, we construct highly dispersed FeS nanoparticles anchored on a porous N-doped carbon nanosheet (CN) skeleton (denoted as FeS/NC) with high conductivity and numerous active sites facile ion adsorption and thermal evaporation combined procedures coupled with a gas sulfurization treatment. Nanoscale design coupled with a conductive carbon skeleton can simultaneously mitigate the above obstacles to obtain enhanced structural stability and faster electrode reaction kinetics. With the aid of density functional theory (DFT) calculations, the synergistic interaction between CNs and FeS can not only ensure enhanced Na adsorption ability but also promote the charge transfer kinetics of the FeS/NC electrode. Accordingly, the designed FeS/NC electrode exhibits remarkable electrochemical performance with superior high-rate capability (451.4 mAh g at 6 A g) and excellent long-term cycling stability (508.5 mAh g over 1000 cycles at 4 A g) due to effectively alleviated volumetric variation, accelerated charge transfer kinetics, and strengthened structural integrity. Our work provides a feasible and effective design strategy toward the low-cost and scalable production of high-performance metal sulfide anode materials for SIBs.
铁硫化物由于具有高的理论容量和低成本而被广泛探索作为钠离子电池(SIBs)的阳极,但其实际应用仍然受到差的倍率性能和快速容量衰减的阻碍。在此,我们首次构建了高度分散的 FeS 纳米颗粒锚定在具有高导电性和大量活性位点的多孔 N 掺杂碳纳米片(CN)骨架上(表示为 FeS/NC),通过简便的离子吸附和热蒸发结合程序以及气体硫化处理。纳米尺度的设计与导电碳骨架的结合可以同时减轻上述障碍,从而获得增强的结构稳定性和更快的电极反应动力学。借助密度泛函理论(DFT)计算,CNs 和 FeS 之间的协同相互作用不仅可以确保增强的 Na 吸附能力,还可以促进 FeS/NC 电极的电荷转移动力学。因此,设计的 FeS/NC 电极表现出优异的电化学性能,具有卓越的高倍率性能(在 6 A g 时为 451.4 mAh g)和出色的长期循环稳定性(在 4 A g 时 1000 次循环后为 508.5 mAh g),这归因于有效地减轻了体积变化、加速了电荷转移动力学和增强了结构完整性。我们的工作为低成本和可扩展的高性能金属硫化物 SIBs 阳极材料的生产提供了一种可行且有效的设计策略。