Song Wei, Yang Shan, An Jiaxiang, Zhang Lixin, Shi Ruina, Chen Niping, Qi Guisheng, Yue Luchao
School of Chemistry and Chemical Engineering & Shanxi Provincial Key Laboratory for High Performance Battery Materials and Devices, North University of China, Taiyuan, Shanxi 030051, China.
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
J Colloid Interface Sci. 2024 Nov 15;674:289-296. doi: 10.1016/j.jcis.2024.05.154. Epub 2024 Jun 4.
Iron sulfides (FeS) are promising anode materials for sodium ion batteries (SIBs); however, their inferior electronic conductivity, large volume swelling, and sluggish sodium ion diffusion kinetics lead to unsatisfactory rate performance and cycling durability. Heteroatom doping plays a crucial role in modifying the physicochemical properties of FeS anodes to enhance its sodium storage. Herein, ultra-fine Ni-doped FeS nanocrystals derived from a metal-organic framework (MOF) and in-situ anchored on a nitrogen doped carbon skeleton (Ni-FeS@NC) are proposed to enhance both structural stability and reaction kinetics. Material characterization, electrochemical performance, and kinetics analysis demonstrate the critical role of Ni doping in sodium storage, particularly in accelerating Na diffusion efficiency. The N-doped carbon derived from the MOF can buffer the volume expansion and enhance the structural stability of electrode materials during sodiation/desodiation processes. As expected, Ni-FeS@NC exhibits a high reversible capacity of 656.6 ± 65.1 mAh g at 1.0 A g after 200 cycles, superior rate performance (308.8 ± 6.0 mAh g at 10.0 A g), and long-term cycling durability over 2000 cycles at 1.0 A g. Overall, this study presents an effective approach for enhancing the sodium storage performance and kinetics of anode materials for high efficiency SIBs.
硫化铁(FeS)是有前景的钠离子电池(SIBs)负极材料;然而,其较差的电子导电性、较大的体积膨胀以及缓慢的钠离子扩散动力学导致其倍率性能和循环耐久性不尽人意。杂原子掺杂在改变FeS负极的物理化学性质以增强其储钠性能方面起着关键作用。在此,我们提出了一种源自金属有机框架(MOF)并原位锚定在氮掺杂碳骨架上的超细镍掺杂FeS纳米晶体(Ni-FeS@NC),以增强结构稳定性和反应动力学。材料表征、电化学性能和动力学分析证明了镍掺杂在储钠过程中的关键作用,特别是在加速钠扩散效率方面。源自MOF的氮掺杂碳可以缓冲体积膨胀并增强电极材料在 sodiation/desodiation 过程中的结构稳定性。正如预期的那样,Ni-FeS@NC在1.0 A g下循环200次后表现出656.6±65.1 mAh g的高可逆容量、优异的倍率性能(在10.0 A g下为308.8±6.0 mAh g)以及在1.0 A g下超过2000次循环的长期循环耐久性。总体而言,本研究提出了一种有效方法来提高高效SIBs负极材料的储钠性能和动力学。