Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2023 Jun 12;14(1):3465. doi: 10.1038/s41467-023-39180-3.
Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (SbS)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These SbS-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of [Formula: see text]. Remarkably, SbS is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.
可扩展可编程光子集成电路(PICs)有可能改变经典和量子光学信息处理的现状。然而,传统的编程方法,包括热光、自由载流子色散和 Pockels 效应,要么导致设备占地面积大,要么导致静态能耗高,这极大地限制了它们的可扩展性。虽然基于硫属化物的非易失性相变材料(PCMs)由于其强的折射率调制和零静态功耗,可以缓解这些问题,但它们往往存在较大的吸收损耗、低循环寿命和缺乏多级操作。在这里,我们报告了一种基于宽带隙 PCM 硫化锑(SbS)包层硅光子平台,该平台同时实现了低损耗(<1.0dB)、高消光比(>10dB)、高循环寿命(>1600 次开关事件)和 5 位操作。这些基于 SbS 的器件通过片上硅 PIN 二极管加热器在亚毫秒级的时间内编程,编程能量密度为[公式:见文本]。值得注意的是,通过施加多个相同的脉冲,SbS 可以编程到精细的中间状态,从而实现可控的多级操作。通过动态脉冲控制,我们实现了 5 位(32 级)操作,每步的幅度为 0.50±0.16dB。利用这种多级行为,我们进一步调整了平衡马赫-曾德尔干涉仪中的随机相位误差。